Question

The total volume of water on earth is estimated to be 1.386x109 km3. How many kg...

The total volume of water on earth is estimated to be 1.386x109 km3. How many kg of glucose (C6H12O6) would need to be combusted to produce enough energy to heat all the water on earth by 1°C? Assume all “earth water” is similar to regular water and has a density of 1 g/cm3 and specific heat capacity of 4.184 kJ/g.K.

Homework Answers

Answer #1

We know that the enthalpy of combustion of glucose is 2880 kJ/mol.

Given that volume = 1.386x109 km3.

specific heat capacity of 4.184 kJ/g.K.

temperature change dT = 1°C

1.00 km ^3 = 1.00*10^ 1 5 cm^3

Then ; 1.386x10^9 km3 = 1.386x10^24 cm^3

Now calculate the mass of water = volume / density

= 1.386x10^24 cm^3* 1.0 g * cm^3

= 1.386x10^24 g

Now calculate the amount of energy as follows:Q = mCdT

Here m = mass of water , c= specific heat

dT temperature change

then ;Q= 1.386x 10^24 g *4.184 kJ/g.K*1

= 5.8 10^24 KJ

Then calculate the mole of Glucose as follows:

= total energy ; 5.8 10^24 KJ/2880 kJ/mol

= 2.01*10^21 mole Glucose

Amount of glucose = number of mole * molar mass

= 2.01*10^21 mole Glucose *180.1559 g/mol

= 3.63*10^23 g Glucose

= 3.63*10^20 kg Glucose

Hence

3.63*10^20 kg of glucose (C6H12O6) would need to be combusted to produce enough energy to heat all the water on earth by 1°C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The total volume of the Pacific Ocean is estimated to be 7.2 × 108 km3. A...
The total volume of the Pacific Ocean is estimated to be 7.2 × 108 km3. A medium-sized atomic bomb produces 1.0 × 1015 J of energy upon explosion. Calculate the number of atomic bombs needed to release enough energy to raise the temperature of the water in the Pacific Ocean by 1°C.
The heat energy required to convert 1 kg water at 0oC to steam at 100oC is:...
The heat energy required to convert 1 kg water at 0oC to steam at 100oC is: (Specific heat capacity of water (cwater) = 4200 J/kg.K; and latent heat of vaporization (Lv) of water = 2.25 x 106 J/kg) Select one: a. 2250 kJ b. 2670 kJ c. 420 kJ
How much heat is needed to convert 10 kg of water at 30◦C to: (a) water...
How much heat is needed to convert 10 kg of water at 30◦C to: (a) water at 100◦C? (b) steam? (c) ice? Take: Specific heat capacity of water = 4.186 kJ/kg◦C Latent heat of vaporization of water = 2264 kJ/kg Latent heat of fusion of water = 333 kJ/kg.
How many joules heat must be added to 2.0 kg of ice at a temperature of...
How many joules heat must be added to 2.0 kg of ice at a temperature of -30 °C to bring it to room temperature 20 °C? (Specific heat capacity of ice is 2100 J/kg °C). (Specific heat capacity of water is 4186 J/kg °C). (Latent heat of water-ice is 3.33x105 J/kg) Group of answer choices 126.52 kJ 959.44 kJ 4293.44 kJ 668.78 kJ
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
A 25.0-g glass tumbler contains 200 mL of water at 24.0ºC. If two 15.0-g ice cubes,...
A 25.0-g glass tumbler contains 200 mL of water at 24.0ºC. If two 15.0-g ice cubes, each at a temperature of –3.00ºC, are dropped into the tumbler, what is the final temperature of the drink? Neglect any heat transfer between the tumbler and the room. (Specific heat of water and ice are 4.186 kJ/(kg K) and 2.05 kJ/(kg K), respectively. The latent heat of fusion of water is 333.5 kJ/kg. The specific heat of glass is 0.840 kJ/(kg K )....
An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A...
An iron boiler of mass 180 kg contains 850 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A...
An iron boiler of mass 180 kg contains 770 kg of water at 21 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...
How many grams of methanol (CH3OH) would need to be combusted to raise the temperature of...
How many grams of methanol (CH3OH) would need to be combusted to raise the temperature of 25.0 L of water by 2.25 °C, given the information below? The specific heat of water is 4.18 J/g⋅°C. Assume the density of water is 1.000 g/mL. 2CH3OH(l) + 3O2(g) = 2CO2(g) + 4H2O(l) ∆H° = –1452.8 kJ
An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A...
An iron boiler of mass 180 kg contains 690 kg of water at 23 ∘C. A heater supplies energy at the rate of 58,000 kJ/h. The specific heat of iron is 450 J/kg⋅C∘, the specific heat of water is 4186 J/kg⋅C∘, the heat of vaporization of water is 2260 kJ/kg⋅C∘. Assume that before the water reaches the boiling point, all the heat energy goes into raising the temperature of the iron or the steam, and none goes to the vaporization...