Question

In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of...

In a constant-pressure calorimeter, 65.0 mL of 0.340 M Ba(OH)2 was added to 65.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 24.38 °C to 29.01 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.

Homework Answers

Answer #1

volume of mixed solution = 65ml(Ba(OH)2+ 65 ml (HCl)= 130ml

mass of the solution = volume* density =130 ml*1g/ml= 130 gm

enthalpy change= mass of solution* specific heat* temperaure difference= 130*4.184*(29.01-24.38)=2518 joules

moles of Ba(OH)2 = molarity* volume in L = 0.34*65/1000 =0.0221, moles of HCl = 0.68*65/1000 = 0.0442

The reaction between Ba(OH)2 and HCl is Ba(OH)2+2HCl ------->BaCl2+2H2O

1 mole of Ba(OH)2 reacts with 2 moles of HCl to produce 2moles of water

0.0221 moles of Ba(OH)2 reacts wity 0.0442 moles of HCl to produce 0.0442 moles of water

hence enthalpy change per mole of water= 2518/0.0442=56968 J/mole= 56.968 Kj/mole

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 22.00 °C to 26.63 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.340 M Ba(OH)2 was added to 70.0 mL of 0.680 M HCl. The reaction caused the temperature of the solution to rise from 21.03 °C to 25.66 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to...
In a constant‑pressure calorimeter, 65.0 mL65.0 mL of 0.320 M Ba(OH)20.320 M Ba(OH)2 was added to 65.0 mL65.0 mL of 0.640 M HCl.0.640 M HCl. The reaction caused the temperature of the solution to rise from 21.87 ∘C21.87 ∘C to 26.23 ∘C.26.23 ∘C. If the solution has the same density and specific heat as water (1.00 g/mL1.00 g/mL and 4.184J/g⋅°C,)4.184J/g⋅°C,) respectively), what is Δ?ΔH for this reaction (per mole H2OH2O produced)? Assume that the total volume is the sum of...
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of...
In a constant-pressure calorimeter, 60.0 mL of 0.300 M Ba(OH)2 was added to 60.0 mL of 0.600 M HCl. The reaction caused the temperature of the solution to rise from 21.02 °C to 25.11 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·°C, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.330 M Ba(OH)2 was added to 55.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 23.64 °C to 28.14 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of...
In a constant-pressure calorimeter, 70.0 mL of 0.330 M Ba(OH)2 was added to 70.0 mL of 0.660 M HCl. The reaction caused the temperature of the solution to rise from 24.17 °C to 28.67 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 65.0 mL of 0.830 M H2SO4 was added to 65.0 mL of...
In a constant-pressure calorimeter, 65.0 mL of 0.830 M H2SO4 was added to 65.0 mL of 0.270 M NaOH. The reaction caused the temperature of the solution to rise from 21.71 °C to 23.55 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of...
In a constant-pressure calorimeter, 50.0 mL of 0.930 M H2SO4 was added to 50.0 mL of 0.290 M NaOH. The reaction caused the temperature of the solution to rise from 21.88 °C to 23.86 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of...
In a constant-pressure calorimeter, 55.0 mL of 0.840 M H2SO4 was added to 55.0 mL of 0.260 M NaOH. The reaction caused the temperature of the solution to rise from 21.91 °C to 23.68 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of...
In a constant-pressure calorimeter, 75.0 mL of 0.810 M H2SO4 was added to 75.0 mL of 0.480 M NaOH. The reaction caused the temperature of the solution to rise from 24.47 °C to 27.74 °C. If the solution has the same density and specific heat as water (1.00 g/mL and 4.184 J/g·K, respectively), what is ΔH for this reaction (per mole of H2O produced)? Assume that the total volume is the sum of the individual volumes.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • XYZ is a calendar-year corporation that began business on January 1, 2017. For 2018, it reported...
    asked 4 minutes ago
  • Although aging and death are realities that all individuals have to deal with at some point...
    asked 27 minutes ago
  • Implement the following functions with AVR assembly language 1) 2-byte addition (i.e, addition on 16-bit numbers)...
    asked 37 minutes ago
  • Assume you have a chemical compound (HA) that is a weak acid which changes color upon...
    asked 1 hour ago
  • A company has two divisions. The first division consists of project management and generated $4,523,367 of...
    asked 1 hour ago
  • Practice Quiz 1 Use the following information to answer questions 1 through 5.                              &
    asked 1 hour ago
  • 3) The corrosion of iron is an electrochemical process that involves the standard reduction potentials given...
    asked 1 hour ago
  • Type or paste question here In 2015, the United States is still recovering from the recession....
    asked 1 hour ago
  • Failures of a critical machine part due to cyclical vibration has a gamma distribution with a...
    asked 2 hours ago
  • f(x)=ln(1+2x), a=4,n=3,3.7<=x<=4.3 (b) Use Taylor's Inequality to estimate the accuracy of the approximation f  Tn(x) when x...
    asked 2 hours ago
  • What is the meaning of convergent and divergent series? Explain your answer with example.
    asked 2 hours ago
  • Based on what you have learned in the textbook about feminism, discuss the approach by the...
    asked 3 hours ago