Question

Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544...

Electrons are ejected from sodium metal by any light that has a wavelength shorter than 544 nm. What is the kinetic energy of an electron (in J) that is ejected from sodium by light with a wavelength of 385 nm?

Homework Answers

Answer #1

cutoff wavelength is 544 nm

we have below equation to be used:

Energy = Planck constant*speed of light/wavelength

=(6.626*10^-34 J.s)*(3.0*10^8 m/s)/(5.44*10^-7 m)

= 3.654*10^-19 J

This is cut off energy. Eo = 3.654*10^-19 J

Now find the energy of photons which ejects an electron

we have below equation to be used:

Energy = Planck constant*speed of light/wavelength

=(6.626*10^-34 J.s)*(3.0*10^8 m/s)/(3.85*10^-7 m)

= 5.163*10^-19 J

E = 5.163*10^-19 J

Kinetic energy,

KE = E - Eo

= 5.163*10^-19 J - 3.654*10^-19 J

= 1.51*10^-19 J

Answer : 1.51*10^-19 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part C What will occur if light with a shorter wavelength than that in part b...
Part C What will occur if light with a shorter wavelength than that in part b =( 91.1 nm) is used to excite the hydrogen atom? What will occur if light with a shorter wavelength than that in part (b) is used to excite the hydrogen atom? A) If light with a wavelength shorter than 91.1 nm is used to excite the H atom, the excess energy will be devided to the kinetic and potential energy of the ejected electron....
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal...
In a photoelectric e↵ect experiment, the maximum kinetic energy of electrons ejected from a cesium metal plate is found to be 0.57eV when the plate is illuminated with 500 nm light. (a) Given what we know about the relation of wavelength and energy, how much energy does a single photon of 500 nm light have? (b) Given the results of this experiment, how much energy must the electron have used to break free of the atom? (c) When the same...
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The photoelectric effect describes electrons being ejected from a metal. Assume that a wavelength of light...
The photoelectric effect describes electrons being ejected from a metal. Assume that a wavelength of light has caused electrons to be emitted from a metal. a. What would be observed if only the intensity of the light is increased? b. What would be observed if only the frequency of the light was increased?
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3...
What is the maximum kinetic energy in eV of electrons ejected from sodium metal by 2.3 x 102-nm EM radiation, given that the binding energy is 2.28 eV? Your answer should be a number with two decimal places, do not include unit.
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is irradiated with light of different wavelengths, and the maximum kinetic energy of ejected electrons is measured. Part A: What is the maximum kinetic energy of ejected electron when 390-nm light is used? Part B:vWhat is the maximum electron speed when 390-nm light is used? Part C: Does 750-nm light have enough energy to eject an electron from the metal?
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in...
Light of wavelength 342 nm shines on a metal surface and the stopping potential V0 in a photoelectric experiment is observed to be 0.850 V. a) What is the work function φ of the metal? (eV) b) What is the maximum kinetic energy of the ejected electrons (in Joules)? c) What is the longest wavelength light that will still allow electrons to escape the metal?(nm)
When a piece of metal is irradiated with UV radiation (wavelength = 162 nm), electrons are...
When a piece of metal is irradiated with UV radiation (wavelength = 162 nm), electrons are ejected with a kinetic energy of 3.54x10-19 J. What is the work function of the metal? (KE=hv-phi)
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT