Question

Find the value of equilibrium constant in temperature 300 degree celcius of following equation by using...

Find the value of equilibrium constant in temperature 300 degree celcius of following equation by using vant hoff equation.

H2(g) +I2(s) --------- 2HI(g) Del H = 52.96

Homework Answers

Answer #1

Given Thermochemical equation,

H2(g) +I2(s) --------- 2HI(g)

Ho = 52.96 kJ/mole = 52960 J/mole.

Let us calculate So using the thermodynamic table of Standard Molar entropy values.

So = Sum of entropies of Products - Sum of entropies of reactants

  So = 2 x Sfo (HI)g - [Sfo(H2)g - Sfo(I2)s]

  So = 2 x (206.6) - [130.7 + 116.1]

  So = 166.4 J/mole*K

Then, Assuming that  SoSo remains constant over a range of temperature we have

G= Ho- T So.

T = 300 K

G= 52960 - 300 x 166.4

Go = 3040 J

Then we know that the equilibrium constant K and  Gare related as,

Go = -RT lnK

K = e-( G/RT).

K = e-(3040 / 8.314*300)

K = e-(1.22)

K = 0.3

Equilibrium constant for given equation is 0.3.

======================XXXXXXXXXXXXXXXXX====================

.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
The equilibrium constant Kc for the reaction below is 82.3 at a certain temperature. H2(g) +...
The equilibrium constant Kc for the reaction below is 82.3 at a certain temperature. H2(g) + I2(g) double arrows 2HI (g) If you start with .355 M of hydrogen iodide, what will the concentrations of HI, H2, I2 be at equilbrium?
Consider the chemical equation and equilibrium constant at 25∘C: H2(g)+I2(g)⇌2HI(g) , K=6.2×102 Calculate the equilibrium constant...
Consider the chemical equation and equilibrium constant at 25∘C: H2(g)+I2(g)⇌2HI(g) , K=6.2×102 Calculate the equilibrium constant for the following reaction at 25∘C: HI(g)⇌12H2(g)+12I2(g)
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H,2(g) + I,2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H,2(g) + I,2(g) --> 2HI(g)    Kc=53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) +...
Hydrogen iodide, HI, decomposes at moderate temperature according to the equation 2HI (g) H2 (g) + I2 (g) When 4.00 mol HI was placed in a 5.00-L vessel at 458C, the equilibrium mixture was found to contain 0.442 mol I2. What is the value of Kc for the decomposition of HI at this temperature?
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g)...
A.) Express the equilibrium constant for the combustion of ethane in the balanced chemical equation. 2C2H6(g)+7O2(g)⇌4CO2(g)+6H2O(g) K=[C2H6]2[O2]7 / [CO2]4[H2O]6 K=[CO2]4 / [C2H6]2[O2]7 K=K=[CO2]4[H2O]6 / [C2H6]2[O2]7 K=[CO2][H2O] / [C2H6]2[O2] B.)Consider the chemical equation and equilibrium constant at 25∘C: H2(g)+I2(g)⇌2HI(g) , K=6.2×102 Calculate the equilibrium constant for the following reaction at 25∘C: HI(g)⇌12H2(g)+12I2(g) Express the equilibrium constant to two significant figures. C.) Consider the following reaction and corresponding value of Kc: H2(g)+Br2(g)⇌2HBr(g) , Kc=1.9×1019 at 25∘C What is the value of Kp...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g)------> H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.311 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI]= ___ M [H2]= ___M [I2]= ____M
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) +...
The equilibrium constant, Kc, for the following reaction is 1.80×10-2 at 698 K. 2HI(g) <----<>H2(g) + I2(g) Calculate the equilibrium concentrations of reactant and products when 0.249 moles of HI are introduced into a 1.00 L vessel at 698 K. [HI] = M [H2] = M [I2] = M
Calculating Equilibrium Constants. The equilibrium constant, K, of a reaction at a particular temperature is determined...
Calculating Equilibrium Constants. The equilibrium constant, K, of a reaction at a particular temperature is determined by the concentrations or pressures of the reactants and products at equilibrium. For a gaseous reaction with the general form aA+bB⇌cC+dD the Kc and Kp expressions are given by Kc=[C]c[D]d[A]a[B]b Kp=(PC)c(PD)d(PA)a(PB)b The subscript c or p indicates whether K is expressed in terms of concentrations or pressures. Equilibrium-constant expressions do not include a term for any pure solids or liquids that may be involved...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT