Question

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials...

Part A Calculate the equilibrium constant at 25 ∘C for the reaction Fe(s)+2Ag+(aq)→Fe2+(aq)+2Ag(s) Standard Reduction Potentials at 25 ∘C Fe2+(aq)+2e−→Fe(s) E∘= −0.45 V Ag+(aq)+e−→Ag(s) E∘= 0.80 V

Homework Answers

Answer #1

The reactions are Fe+2(aq)+2e- ------>Fe(s), Eo=-0.45V , reversing the reaction, Fe(s)------->Fe+2+2e-, Eo=0.45V (1)

Ag+(aq)+e- ------>Ag, Eo=0.80V (2)

multiplying Eq.2 with 2 and addition with Eq.1 gives

Fe+2Ag+ ------>Fe+2+2Ag, Eo=0.80+0.45= 1.25V

since deltaG= -nFE= -RTlnK, K= equilibrium constant, n= no of exchangeble electrons =2, F= 96500, E= 1.25V, T= 25+273= 298K, R= 8.314 J/mole.K

lnK= nFE/RT = 2* 96500*1.25/ (8.314*298)= 97.4

K= 1.944*1042

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard...
Use the table of standard reduction potentials given above to calculate the equilibrium constant at standard temperature (25 ∘C) for the following reaction: Fe(s)+Ni2+(aq)→Fe2+(aq)+Ni(s) Fe2+(aq)+2e−→Fe(s) −0.45 Ni2+(aq)+2e−→Ni(s) −0.26
What is the standard free energy change and equilibrium constant for the following reaction at 25...
What is the standard free energy change and equilibrium constant for the following reaction at 25 °C? 2Ag+ (aq) + Fe (s)   2 Ag (s) + Fe2+ (aq) Given standard electrode potentials: Ag+ (aq) + e-    Ag (s) E0 = 0.7996 V Fe2+ (aq) + 2 e-    Fe (s) E0 = - 0.447 V
Which metal cation can oxidize Fe(s) to Fe2+(aq) (i.e. which metal cation is a stronger oxidizing...
Which metal cation can oxidize Fe(s) to Fe2+(aq) (i.e. which metal cation is a stronger oxidizing agent)? (A) Al3+ (B) Ag+ (C) Mn2+ (D) Zn2+ Some relevant standard reduction potentials: Ag+(aq) + e- → Ag (s) Eo= +0.80 V Fe2+(aq) + 2e- → Fe (s)    Eo= -0.45 V Zn2+(aq) + 2e- → Zn(s)    Eo= -0.76 V Mn2+(aq) + 2e- → Mn (s)    Eo= - 1.18 V Al3+(aq) + 3e- →Al(s) Eo= -1.66 V
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77...
Using the following standard reduction potentials, Fe3+(aq) + e- --> Fe2+ (aq) E = + 0.77 V Ni2+ (aq) + 2e- (aq) --> Ni(s) E = - 0.26 V Calculate the standard cell potential for the galvanic cell reaction given below and determine weather or not if the reaction is spontaneous under standard conditions. Ni2+ (aq) + 2 Fe2+ (aq) --> 2 Fe3+ (aq) + Ni(s)   SHOW ALL WORK
3) The corrosion of iron is an electrochemical process that involves the standard reduction potentials given...
3) The corrosion of iron is an electrochemical process that involves the standard reduction potentials given here at 25 °C. Fe2+(aq) + 2e– → Fe(s) E° = –0.44 V O2(g) + 4H+ (aq) + 4e– → 2H2O(l) E° = +1.23 V a. Calculate the voltage for the standard cell based on the corrosion reaction. 2Fe(s) + O2(g) + 4H+ (aq) → 2Fe2+(aq) + 2H2O(l) b. Calculate the voltage if the reaction in Part a occurs at pH = 4.00 but...
Calculate the equilibrium constant for each of the reactions at 25 ?C. Standard Electrode Potentials at...
Calculate the equilibrium constant for each of the reactions at 25 ?C. Standard Electrode Potentials at 25 ?C Reduction Half-Reaction E?(V) Pb2+(aq)+2e? ?Pb(s) -0.13 Mg2+(aq)+2e? ?Mg(s) -2.37 Br2(l)+2e? ?2Br?(aq) 1.09 Cl2(g)+2e? ?2Cl?(aq) 1.36 MnO2(s)+4H+(aq)+2e? ?Mn2+(aq)+2H2O(l) 1.21 Cu2+(aq)+2e? ?Cu(s) 0.16 Part A: Pb2+(aq)+Mg(s)?Pb(s)+Mg2+(aq) Express your answer using three significant figures. Part B: Br2(l)+2Cl?(aq)?2Br?(aq)+Cl2(g) Express your answer using two significant figures. Part C: MnO2(s)+4H+(aq)+Cu(s)?Mn2+(aq)+2H2O(l)+Cu2+(aq) Express your answer using two significant figures.
Calculate the equilibrium constant, K, for the following reaction at 25 °C. Fe^3+(aq)+B(s) + 6H2O(l) -->...
Calculate the equilibrium constant, K, for the following reaction at 25 °C. Fe^3+(aq)+B(s) + 6H2O(l) --> Fe(s) + H3BO3(s) + 3H3O+(aq) The balanced reduction half-reactions for the above equation and their respective standard reduction potential values (E°) are as follows: Fe3+(aq) + 3e- --> Fe (s)... E=-0.04V H3BO3(s) + 3H3O+(aq) + 3e- ---> B(s)+6H20 (l).....E=-0.8698 K=?
7. Determine Eo for the following reaction, using the given standard reduction potentials: Cu(s) + Fe2+(aq)...
7. Determine Eo for the following reaction, using the given standard reduction potentials: Cu(s) + Fe2+(aq) → Cu+(aq) + Fe(s) Eo for Fe2+(aq) = -0.44 V Eo for Cu+(aq) = 0.52 V 8. Consider the following half-reactions. Which of these is the strongest oxidizing agent listed here? I2(s) + 2 e- → 2 I-(aq) Eo = 0.53 V S2O82-(aq) + 2 e- → 2 SO42-(aq) Eo = 2.01 V Cr2O72-(aq) + 14 H+ + 6 e- → Cr3+(aq) + 7...
15. What is the equilibrium constant (K) at 25°C for the following cell reaction? Fe(s) +...
15. What is the equilibrium constant (K) at 25°C for the following cell reaction? Fe(s) + Cd2+(aq) Fe2+(aq) + Cd(s); E°cell = 0.010 V A) 0.010 B) 1.5 C) 0.25 D) 1.0 E) 2.2
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 69 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.210 M...
Consider the reaction Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) at 69 ∘C , where [Fe2+]= 3.00 M and [Mg2+]= 0.210 M . Part A What is the value for the reaction quotient, Q, for the cell? Part B What is the value for the temperature, T, in kelvins? Part C What is the value for n? Part D Calculate the standard cell potential for Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) Part E For the reaction 2Co3+(aq)+2Cl−(aq)→2Co2+(aq)+Cl2(g).  E∘=0.483 V what is the cell potential at 25 ∘C if the concentrations are [Co3+]=...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT