Question

An electrochemical cell is based on the following two half-reactions: Ox: Pb(s)→Pb2+(aq, 0.11 M )+2e− Red:...

An electrochemical cell is based on the following two half-reactions:

Ox: Pb(s)→Pb2+(aq, 0.11 M )+2e−

Red: MnO−4(aq, 1.70 M )+4H+(aq, 2.6 M )+3e−→ MnO2(s)+2H2O(l)

Part A Compute the cell potential at 25 ∘C.

Please show all work. Thank you.

Homework Answers

Answer #1

Ox:

Pb(s)→Pb2+(aq, 0.11 M )+2e−

Red:

MnO−4 + 4H+ + 3e−→ MnO2(s)+2H2O(l)

Cancel electrons in both the reactions by converting equal number of electrons

So multiply oxidation reaction by 3 and reduction reaction by 2

3Pb(s) → 3Pb2+ + 6e−

2MnO−4 + 8H+ + 6e−→ 2MnO2(s)+4H2O(l)

Summing

3Pb + 2MnO4- + 8H+ -----> 3Pb+2 + 2MnO2 + 4H2O

E = Eo - 0.0591/n *log Q

n = mo of moles of electrons = 6

Q = [Pb+2]^3 / [MnO4-]^2 [ H+]^8

Substitute concentrations

Q = 2.2*10^-7

Eo = E oxidation + E reduction = 0.588 + 0.126 = 0.714 V

Substituting in E cell formula

Ecell = 0.779 V

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)?Sn2+(aq, 1.60 M )+2e? Red:...
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)?Sn2+(aq, 1.60 M )+2e? Red: ClO2(g, 0.195 atm )+e??ClO?2(aq, 1.70 M ). Compute the cell potential at 25 degrees C.
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)→Sn2+(aq, 1.50 M )+2e− Red:...
An electrochemical cell is based on the following two half-reactions: Ox: Sn(s)→Sn2+(aq, 1.50 M )+2e− Red: ClO2(g, 0.150 atm )+e−→ClO−2(aq, 1.50 M ) Compute the cell potential at 25 ∘C .
Calculate the standard cell potential for each of the electrochemical cells. Part A 2Ag+(aq)+Pb(s)?2Ag(s)+Pb2+(aq) Express your...
Calculate the standard cell potential for each of the electrochemical cells. Part A 2Ag+(aq)+Pb(s)?2Ag(s)+Pb2+(aq) Express your answer using two significant figures. Part B 2ClO2(g)+2I?(aq)?2ClO?2(aq)+I2(s) Express your answer using two significant figures. Part C O2(g)+4H+(aq)+2Zn(s)?2H2O(l)+2Zn2+(aq)
Constants | Periodic Table An electrochemical cell is based on the following two half-reactions: oxidation: Sn(s)→Sn2+(aq,...
Constants | Periodic Table An electrochemical cell is based on the following two half-reactions: oxidation: Sn(s)→Sn2+(aq, 2.00 M )+2e− reduction: ClO2(g, 0.290 atm )+e−→ClO−2(aq, 1.65 M ) You may want to reference (Pages 865 - 869) Section 19.6 while completing this problem. Part A Compute the cell potential at 25 ∘C. Express the cell potential to three significant figures.
Calculate the equilibrium constant for each of the reactions at 25 ?C. Standard Electrode Potentials at...
Calculate the equilibrium constant for each of the reactions at 25 ?C. Standard Electrode Potentials at 25 ?C Reduction Half-Reaction E?(V) Pb2+(aq)+2e? ?Pb(s) -0.13 Mg2+(aq)+2e? ?Mg(s) -2.37 Br2(l)+2e? ?2Br?(aq) 1.09 Cl2(g)+2e? ?2Cl?(aq) 1.36 MnO2(s)+4H+(aq)+2e? ?Mn2+(aq)+2H2O(l) 1.21 Cu2+(aq)+2e? ?Cu(s) 0.16 Part A: Pb2+(aq)+Mg(s)?Pb(s)+Mg2+(aq) Express your answer using three significant figures. Part B: Br2(l)+2Cl?(aq)?2Br?(aq)+Cl2(g) Express your answer using two significant figures. Part C: MnO2(s)+4H+(aq)+Cu(s)?Mn2+(aq)+2H2O(l)+Cu2+(aq) Express your answer using two significant figures.
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq)...
Consider the following half-reactions: Ag+ (aq) + e- --> Ag(s) E cell = 0.80 VV Cu2+(aq) + 2e- --> Cu(s) E cell = 0.34 V Pb2+(aq) + 2e- --> Pb(s) E cell = -0.13 V Fe2+(aq) + 2e- --> Fe(s) E cell = -0.44 V Al3+ (aq) + 3e- --> Al(s) E cell = -1.66 V Which of the above metals or metal ions will oxidize Pb(s)? a. Ag+(aq) and Cu2_(aq) b. Ag(s) and Cu(s) c. Fe2+(aq) and Al3+(aq) d....
What is the standard cell potential for an electrochemical cell based on the following half-reactions? IO3-(aq)...
What is the standard cell potential for an electrochemical cell based on the following half-reactions? IO3-(aq) + 6 H+(aq) + 6 e- ----> I-(aq) + 3 H2O(l ) E° = 1.085 V Zn2+(aq) + 2 e- ---> Zn(s) E° = -0.762 V
When [ Pb2+] = 1.00 M, the observed cell potential at 298K for an electrochemical cell...
When [ Pb2+] = 1.00 M, the observed cell potential at 298K for an electrochemical cell with the reaction shown below is 1.611 V. What is the Al3+concentration in this cell? 3 Pb2+(aq) + 2 Al (s) ----> 3 Pb (s) + 2 Al3+(aq) [ Al3+] = ______M
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→...
A chemist designs a galvanic cell that uses these two half-reactions: half-reaction standard reduction potential Cl2(g)+2e−→ 2Cl−(aq)   E0red = +1.359V NO−3(aq)+4H+(aq)+3e−→ NO(g)+2H2O(l)   E0red = +0.96V Answer the following questions about this cell. Write a balanced equation for the half-reaction that happens at the cathode.   Write a balanced equation for the half-reaction that happens at the anode.   Write a balanced equation for the overall reaction that powers the cell. Be sure the reaction is spontaneous as written.   Do you have enough...
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq)...
For the following reactions and given standard reduction potentials O2(g) + 4H+(aq) + 2Cu(s)  2Cu2+(aq) + 2H2O(l) O2(g) + 4H+(aq) + 4e-  2H2O(l)       E° = 1.23 V Cu2+ + 2e-  Cu(s)    E° = 0.34 V a. Calculate E°cell b. Calculate ΔG° at 254 K