Question

Using the table of standard entropies and enthalpies of formation, calculate ΔH°, ΔS°, and ΔG° for...

Using the table of standard entropies and enthalpies of formation, calculate ΔH°, ΔS°, and ΔG° for the following reactions at 298.15 K. (Use only the table of standard entropies and standard enthalpies of formation, not the table of standard Gibbs free energies.) Compound ΔHof (kJmol)ΔHfo (kJmol) ΔSof (Jmol⋅K)ΔSfo (Jmol⋅K)

The equation SiO2(s) + 2 Mg(s) → Si(s) + 2 MgO(s)

  • ΔHoΔHo  kJ
  • ΔSoΔSo  J/K
  • ΔGoΔGo  kJ
C(s) 0 5.7
CO(g) -110.5 197.7
CO2(g) -393.5 213.8
Cl2(g) 0 223.1
H2(g) 0 130.7
HCl(g) -92.3 186.9
Mg(s) 0 32.7
MgCl2(s) -641.3 89.6
MgO(s) -601.6 27.0
Si(s) 0 18.8
SiCl4(g) -92.3 330.7
SiO2(s) -910.7 41.5

Homework Answers

Answer #1

Thank you. I haveanswered all the parts as per law of thermidynamics. Please like the answer ASAP.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
42. The standard enthalpies of formation of NO (g), NO2 (g), and N2O3 (g) are 90.25...
42. The standard enthalpies of formation of NO (g), NO2 (g), and N2O3 (g) are 90.25 kJ mole-1, 33.2 kJ mole-1, and 83.72 kJ mole-1, respectively. Their standard entropies are 210.65 J mole-1 K-1, 239.9 J mole-1 K-1, and 312.2 J mole-1 K-1 respectively. (a) Use the data above to calculate the free energy change for the following reaction at 25.0 o C. N2O3 (g) -------> NO (g) + NO2 (g)
Large quantities of hydrogen are needed for the synthesis of ammonia. One preparation of hydrogen involves...
Large quantities of hydrogen are needed for the synthesis of ammonia. One preparation of hydrogen involves the reaction between carbon monoxide and steam at 3.00 × 102 °C in the presence of a copper-zinc catalyst: CO(g) + H2O(g) ⇆ CO2(g) + H2(g) Using the standard formation constant data in the table, calculate the equilibrium constant (KP) for the reaction at 3.00 × 102 °C and the temperature at which the reaction favors the formation of CO and H2O Species Δ...
Calculate the standard enthalpy change (ΔH⁰rxn ) for the reaction of TiCl4(g) and H2O(g) to form...
Calculate the standard enthalpy change (ΔH⁰rxn ) for the reaction of TiCl4(g) and H2O(g) to form TiO2(s) and HCl(g) given the standard enthalpies of formation (ΔH⁰f ) shown in the table below. (Include the sign of the value in your answer.)   kJ Compound ΔH⁰f  (kJ/mol) TiCl4(g) −763.2 H2O(g) −241.8 TiO2(s) −944.0 HCl(g) −92.3
Calculate the change in enthalpy for the Mg-HCl reaction using standard enthalpies of formation. (Change in...
Calculate the change in enthalpy for the Mg-HCl reaction using standard enthalpies of formation. (Change in enthalpy of formation): HCl(aq) = -167.2kJ; MgCl2(aq) = -791.2 kJ
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The...
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The enthalpy of formation of Fe3O4 is −1117 kJ/mol. 8 Al(s) + 3 Fe3O4(s) → 4 Al2O3(s) + 9 Fe(s) 2. a) Nitroglycerin is a powerful explosive, giving four different gases when detonated. 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2 (g) + 6 CO2(g) + 5 H2O(g) Given that the enthalpy of formation of nitroglycerin, ΔHf°, is −364 kJ/mol, calculate the energy (heat at...
Given the following data, calculate, ΔH rxn, ΔS rxn, and Δ rxn, at 25° C for...
Given the following data, calculate, ΔH rxn, ΔS rxn, and Δ rxn, at 25° C for the equilibrium describe by the chemical equation. What direction is the spontaneity of this system? Mg (s) +HCl (aq) <---> H2 (g) + MgCl2 (aq) Mg(s) HCl(aq) H2 (g) MgCl2(aq) ΔH°f (Kj/mol) 0 -167.2 0 -801.3 S°(J/(mol K) 130.7 56.5 32.7 -24.0
The values for the standard formation enthalpies at 298.15K for CO (g), and H2O(g) are -...
The values for the standard formation enthalpies at 298.15K for CO (g), and H2O(g) are - 110.53 kJ/mol and - 241.82 kJ/mol, respectively. The molar heat capacities of products and reactants are given as: CPm Ø (H2(g)) = 28.824 J/K.mol, CPm Ø (CO(g)) = 29.140 J/mol.K, CPm Ø (H2O(g)) = 33.580 J/mol.K, CPm Ø (C(s, graphite)) = 8.527 J/mol.K Calculate Delta (reaction) U in kJ for the formation at 378.15 K and 1 bar of 6.54 g CO(g) following the...
3. Use the enthalpies of formation in the table below to answer the following questions. Substance...
3. Use the enthalpies of formation in the table below to answer the following questions. Substance Enthalpy of Formation (kJ/mol), 298 K Oxygen (O2)(g) 0 Methane (CH4)(g) -74.8 Carbon Dioxide (CO2)(g) -393.5 Water (H2O)(g) -241.8 Water (H2O)(l) -285.8 a) Calculate the change in enthalpy for the combustion of methane using the values in the table above (assuming that the system remains at 298 K) for the combustion of methane to form carbon dioxide and gaseous water. b) Repeat this calculation...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report...
1.Using the enthalpies of formation given below, calculate ΔH°rxn in kJ, for the following reaction. Report your answer to two decimal places in standard notation. H2S(g) + 2O2(g) → SO3(g) + H2O(l) H2S (g): -20.60 kJ/mol O2 (g): 0.00 kJ/mol SO3 (g): -395.77 kJ/mol H2O (l): -285.83 kJ/mol 2. Calculate the amount of heat absorbed/released (in kJ) when 22.54 grams of SO3 are produced via the above reaction. Report your answer to two decimal places, and use appropriate signs to...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7...
Consider the oxidation of CO to CO2: CO(g)+12O2(g)→CO2(g) Reactant or product ΔH∘f(kJ/mol) S∘(J/mol⋅K) CO -110.5 197.7 O2 0 205.2 CO2 -393.5 213.8 Part A Calculate ΔG∘rxn at 25∘C. Express your answer to one decimal place with the appropriate units. ΔG∘rxn = SubmitMy AnswersGive Up Incorrect; Try Again; 4 attempts remaining Your answer does not have the correct dimensions. Part B Determine whether the reaction is spontaneous at standard conditions. Determine whether the reaction is spontaneous at standard conditions. spontaneous nonspontaneous
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT