Question

2.00-mol of a monatomic ideal gas goes from State A to State D via the path...

2.00-mol of a monatomic ideal gas goes from State A to State D via the path A→B→C→D:

State A PA=11.0atm, VA=13.00L
State B PB=11.0atm, VB=6.50L
State C PC=20.5atm, VC=6.50L
State D PD=20.5atm, VD=22.00L

Assume that the external pressure is constant during each step and equals the final pressure of the gas for that step.

Calculate q for this process.

Calculate w for this process.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a Carnot cycle that goes isothermally from A (pa,Va,Thot) to B (pb, Vb ,Thot), adiabatically...
Consider a Carnot cycle that goes isothermally from A (pa,Va,Thot) to B (pb, Vb ,Thot), adiabatically to C (pc, Vc ,Tcool), isothermally to D (pd, Vd ,Tcool), and adiabatically back to A (pa,Va,Thot); pa is the maximal pressure. (a) Sketch the pV diagram for this Carnot cycle. (b) Calculate the change in entropy DS for the A-B isotherm, calculate the change in entropy DS for the B-C adiabatic expansion. (Hint: DS for adiabat B-C is not equal to zero; DS...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from...
The above pV diagram shows the expansion of 5.0 moles of a monatomic ideal gas from state a to state b. As shown in the diagram, Pa = Pb = 600 Pa, Va = 3.0 m3, and Vb = 9.0 m3. The pressure is then reduced to 200 Pa without changing the volume, as the gas is taken from state b to state c. c. Determine Q for the process bc. d. Determine the change in thermal energy of the...
An ideal monatomic gas at Pa = 3x10^5 N/m^2, Va = 0.06m^3, and T = 27C...
An ideal monatomic gas at Pa = 3x10^5 N/m^2, Va = 0.06m^3, and T = 27C expands adiabatically tp Pb = 2x10^5 N/m^2 and Vb = 0.085m^3 and then isothermally to Vc = 0.1m^3. What are the final temperature, pressure, and work performed by the gas? Show these paths on a P-V diagram
The PV diagram shows the compression of 60.1 moles of an ideal monoatomic gas from state...
The PV diagram shows the compression of 60.1 moles of an ideal monoatomic gas from state A to state B. Calculate Q, the heat added to the gas in the process A to B. Data: PA= 1.84E+5 N/m2 VA= 1.97E+0 m3 PB= 1.15E+5 N/m2 VB= 9.30E-1 m3
a 2 mol ideal monatomic gas is carried through a cycle from A to C. in...
a 2 mol ideal monatomic gas is carried through a cycle from A to C. in state A it has a pressure of 2×10^5 Pa and a volume of 0.010 m^3, then it increases its volume to 0.030 m^3 at constant pressure to reach state B, then it reaches state C to a constant volume decreasing its pressure qnd finally the gas isothermally compounded solwly to its original volume closing the cycle. the heat of the fas in the complete...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 259.4×10−6 m3 to a final volume of 110.6×10−6 m3 . If 8070 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas? ?= K ?f= Pa
We consider an isolated system made up of 2 moles of an ideal gas which can...
We consider an isolated system made up of 2 moles of an ideal gas which can pass reversibly from a state A (PA, VA, TA = 300 K) to a state B (PB = 3PA, VB = VA / 3, TB) by a transformation which comprises two stages: it is first isochoric (constant volume), then isobaric (constant pressure). 1-Determine the work involved. The ideal gas constant is R = 8.31 J / K.mol, and the internal energy of an ideal...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of...
A 2.00-mol sample of a diatomic ideal gas expands slowly and adiabatically from a pressure of 5.04 atm and a volume of 13.0 L to a final volume of 31.0 L. (a) What is the final pressure of the gas? atm (b) What are the initial and final temperatures? initial K final K (c) Find Q for the gas during this process. kJ (d) Find ΔEint for the gas during this process. kJ (e) Find W for the gas during...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes...
2.)1.0 mol sample of an ideal monatomic gas originally at a pressure of 1 atm undergoes a 3-step process as follows:                  (i)         It expands adiabatically from T1 = 588 K to T2 = 389 K                  (ii)        It is compressed at constant pressure until its temperature reaches T3 K                  (iii)       It then returns to its original pressure and temperature by a constant volume process. A). Plot these processes on a PV diagram B). Determine the temperature T3 C)....
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle...
The working substance of an engine is 1.00 mol of a monatomic ideal gas. The cycle begins at P1=1.00 atm and V1=24.6L. The gas is heated at constant volume to P2=2.00atm. It then expands at constant pressure until its volume is 49.2L. The gas is then cooled at constant volume until its pressure is again 1.00 atm. It is then compressed at constant pressure to its original state. All the steps are quasi-static and reversible. Calculate the TOTAL work done...