Question

Le Chantelier: Concentration Consider the following system at equilibrium where H=-16.1 kJ, and Kc=154, at 298...

Le Chantelier: Concentration

Consider the following system at equilibrium where H=-16.1 kJ, and Kc=154, at 298 K.

2NO(g) + Br2(g) 2NOBr(g)

When 0.36 moles of Br2(g) are added to the equilibrium system at constant temperature:

the value of Kc A.increases

                         B. decreases

                          C. remains the same.

the value of Qc A. is greater than Kc

                           B. is equal to Kc

                            C. is less than Kc

the reaction must: A. run in the forward directin to restablish equilibrium

                             B. run in the reverse direction to reestablish equilibrium.

                             C. remain the same. It is already at equilibrium.

the concentration of NO will: A. increase

                                              B. decrease

                                              C. remain the same.

Homework Answers

Answer #1

2NO(g) + Br2(g) --------------> 2NOBr(g)   ,   H =-16.1 kJ, and Kc = 154

When 0.36 moles of Br2(g) are added to the equilibrium system at constant temperature:

the value of Kc : C.) remains the same.

the value of Qc : C) . is less than Kc

the reaction must: A) . run in the forward directin to restablish equilibrium

the concentration of NO will: B.) decrease

Explanation :

Kc only change with temperature.

if 0.36 mol Br2 increases , the reaction shift to forward direction.

so the concentration of NO and Br2 decreases, and NOBr increases.

then Qc decreases.

                                      

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following system at equilibrium where H° = -111 kJ, and Kc = 0.159, at...
Consider the following system at equilibrium where H° = -111 kJ, and Kc = 0.159, at 723 K. N2(g) + 3H2(g) --> 2NH3(g) When 0.32 moles of H2(g) are removed from the equilibrium system at constant temperature: 1- the value of Kc A. increases. B. decreases. C. remains the same. 2- the value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. t 3- the reaction must: A. run in the forward...
Consider the following system at equilibrium where H° = -111 kJ, and Kc = 0.159, at...
Consider the following system at equilibrium where H° = -111 kJ, and Kc = 0.159, at 723 K. N2(g) + 3H2(g) 2NH3(g) If the VOLUME of the equilibrium system is suddenly increased at constant temperature: The value of Kc: A. increases. B. decreases. C. remains the same. The value of Qc: A. is greater than Kc. B. is equal to Kc. C. is less than Kc. The reaction must: A. run in the forward direction to reestablish equilibrium. B. run...
Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 ,...
Consider the following system at equilibrium where H° = 87.9 kJ/mol, and Kc = 1.20×10-2 , at 500 K. PCl5 (g) PCl3 (g) + Cl2 (g) When 0.32 moles of PCl5 (g) are added to the equilibrium system at constant temperature: the value of Kc A. increases. B. decreases. C. remains the same. the value of Qc A. is greater than Kc. B. is equal to Kc. C. is less than Kc. the reaction must: A. run in the forward...
Consider the following system at equilibrium where H° = 198 kJ, and Kc = 2.90×10-2, at...
Consider the following system at equilibrium where H° = 198 kJ, and Kc = 2.90×10-2, at 1150 K: 2SO3(g) 2SO2(g) + O2(g) If the TEMPERATURE on the equilibrium system is suddenly decreased: The value of Kc A. Increases B. Decreases C. Remains the same The value of Qc A. Is greater than Kc B. Is equal to Kc C. Is less than Kc The reaction must: A. Run in the forward direction to restablish equilibrium. B. Run in the reverse...
Consider the following reaction where Kc = 6.50×10-3 at 298 K. 2NOBr(g) 2NO(g) + Br2(g) A...
Consider the following reaction where Kc = 6.50×10-3 at 298 K. 2NOBr(g) 2NO(g) + Br2(g) A reaction mixture was found to contain 0.101 moles of NOBr(g), 5.03×10-2 moles of NO(g), and 4.51×10-2 moles of Br2(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc, equals . The reaction A. must run in the forward direction to reach equilibrium. B. must run in the...
Consider the following reaction where Kc = 6.50×10-3 at 298 K: 2 NOBr (g) 2 NO...
Consider the following reaction where Kc = 6.50×10-3 at 298 K: 2 NOBr (g) 2 NO (g) + Br2 (g) A reaction mixture was found to contain 8.07×10-2 moles of NOBr (g), 4.06×10-2 moles of NO (g), and 4.46×10-2 moles of Br2 (g), in a 1.00 liter container. Indicate True (T) or False (F) for each of the following: 1. In order to reach equilibrium NOBr(g) must be consumed . 2. In order to reach equilibrium Kc must decrease ....
A) Consider the following reaction where Kc = 0.159 at 723 K. N2(g) + 3H2(g) 2NH3(g)...
A) Consider the following reaction where Kc = 0.159 at 723 K. N2(g) + 3H2(g) 2NH3(g) A reaction mixture was found to contain 4.94×10-2 moles of N2(g), 4.07×10-2 moles of H2(g) and 6.19×10-4 moles of NH3(g), in a 1.00 liter container. The reaction quotient, Qc, equals __________. The reaction__________________ A. must run in the forward direction to reach equilibrium. B. must run in the reverse direction to reach equilibrium. C. is at equilibrium. B) Consider the following reaction where Kc...
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) +...
1) Consider the following reaction where Kc = 7.00×10-5 at 673 K. NH4I(s) --> NH3(g) + HI(g) A reaction mixture was found to contain 5.62×10-2 moles of NH4I(s), 1.12×10-2 moles of NH3(g), and 8.37×10-3 moles of HI(g), in a 1.00 liter container. Is the reaction at equilibrium? If not, what direction must it run in order to reach equilibrium? The reaction quotient, Qc, equals (???????) The reaction ????? A. must run in the forward direction to reach equilibrium. B. must...
Consider the following system at equilibrium at 298 K: 2 NOBr (g) + 3.85 kcal 2...
Consider the following system at equilibrium at 298 K: 2 NOBr (g) + 3.85 kcal 2 NO (g) + Br2 (g) Indicate whether each individual change would favor the production of NO (g). Evaluate each change separately, assuming that all other conditions remain constant. ANSWER YES OR NO Decreasing the temperature. yes or no Decreasing the pressure. yes or no Decreasing the volume. yes or no Removing NOBr . yes or no Adding Br2 . yes or no ____________________________ Consider...
Consider the following reaction with an equilibrium constant Kc = 20.06. Fill in the blanks with...
Consider the following reaction with an equilibrium constant Kc = 20.06. Fill in the blanks with either less or greater. 4HCl(g) + O2(g) 2Cl2(g) + 2H2O(g) From this information it can be conclude that the rate of the forward reaction is ____________? than the rate of the reverse reaction and that the concentration of the reactants will be______________?than the concentration of the products. ANSWER THE BLANKS. THANK YOU.