Question

Rate constants for the reaction A → B + C are 1.55 s-1 at 298 K...

Rate constants for the reaction A → B + C are 1.55 s-1 at 298 K and 17.2 s-1 at 308 K.

A. What is the activation energy (Ea) for this reaction?

B. What would the rate constant be at 318 K?

C. What is the order of this reaction?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The rate constants for a first order reaction are found to be 2.76*10-5 s^-1 at 25...
The rate constants for a first order reaction are found to be 2.76*10-5 s^-1 at 25 degrees celsius and 6.65*10^-4 s^-1 at 50 degrees celsius, respectively. A) Calculate the activation energy Ea in kilojoules per mole. B) Calculate the rate constant at 75 degrees celsius
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K. Part A What is the value of the activation energy in kJ/mol? Ea = 134   kJ/mol   SubmitMy AnswersGive Up Correct Part B What is the rate constant at 770K ? Express your answer using two significant figures. k =   /(M?s)
Answer the following based on the reaction. At 313 K, the rate constant for this reaction...
Answer the following based on the reaction. At 313 K, the rate constant for this reaction is 1.09×102 /s and at 564 K the rate constant is 6.62×106 /s. cyclopentane → 1-pentene 1. Determine the activation energy (EA) (in kJ/mol) for this reaction. 2. Determine the pre-exponential factor, A (in /s) for this reaction. 3. Determine the rate constant (in /s) for this reaction at 1218 K.
what is the activation energy(Ea) of a first order reaction is the reaction rate constant(k) increases...
what is the activation energy(Ea) of a first order reaction is the reaction rate constant(k) increases from 0.0300 min to 0.500 min as the temperature increases from 20.0 C to 45.0 C?
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in...
The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and...
± The Arrhenius Equation The Arrhenius equation shows the relationship between the rate constant k and the temperature T in kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), A is a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins...
The Arrhenius equation shows the relationship between the rate constant k and the temperature Tin kelvins and is typically written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K), Ais a constant called the frequency factor, and Ea is the activation energy for the reaction. However, a more practical form of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate constants for a single reaction at two different absolute temperatures (T1and...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the...
a.)A certain reaction has an activation energy of 25.10 kJ/mol. At what Kelvin temperature will the reaction proceed 7.00 times faster than it did at 289 K? b.A certain reaction has an enthalpy of ΔH = 39 kJ and an activation energy of Ea = 51 kJ. What is the activation energy of the reverse reaction? c.)At a given temperature, the elementary reaction A<=> B in the forward direction is the first order in A with a rate constant of...
Part A A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C....
Part A A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C. What is the value of k at 61 ∘C if Ea = 90.0 kJ/mol ? Express your answer using two significant figures. k = s−1 SubmitMy AnswersGive Up Part B A certain first-order reaction has a rate constant of 2.40×10−2 s−1 at 21 ∘C. What is the value of k at 61 ∘C if Ea = 104 kJ/mol ? Express your answer using two...
The first order rate constant for a reaction at 790 oC is 4.05e-03 s-1. If the...
The first order rate constant for a reaction at 790 oC is 4.05e-03 s-1. If the activation energy for the reaction is 255 kJ/mol, what is the rate constant at 890 oC? k =  s-1