Question

Part A What mass of silver chloride can be produced from 1.46 L of a 0.282...

Part A What mass of silver chloride can be produced from 1.46 L of a 0.282 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.01 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.

Homework Answers

Answer #1

Sol.

Reaction :

MgCl2 + 2AgNO3 ----> Mg(NO3)2 + 2AgCl

Part A :

moles of silver nitrate , AgNO3

= conc. of AgNO3 × Volume of AgNO3  

= 0.282 × 1.46

= 0.41172 mol  

From reaction ,

moles of silver chloride , AgCl = moles of AgNO3 = 0.41172 mol

As molar mass of AgCl = 143.32 g / mol

So , mass of AgCl produced

= 0.41172 × 143.32  

=   59.008 g

Part B :

From reaction , moles of magnesium chloride , MgCl2

= moles of AgNO3 / 2

= 0.41172 / 2   

= 0.20586 mol

Also , Volume of MgCl2 = 3.01 L

So , Conc. of MgCl2  

= 0.20586 / 3.01

=   0.068 M  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.65 L of a 0.282 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.91 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.84 L of a 0.152 M solution of silver nitrate? Express your answer with the appropriate units. mass of AgCl = g Part B The reaction described in Part A required 3.16 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq). What mass of silver chloride can be produced from 1.96 L of a 0.233 M solution of silver nitrate? Express your answer with the appropriate units. The reaction described in Part A required 3.46 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A: What mass of silver chloride can be produced from 1.31 L of a 0.156 M solution of silver nitrate? Express your answer with the appropriate units. Part B: The reaction described in Part A required 3.43 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq). What mass of silver chloride can be produced from 1.96 L of a 0.233 Msolution of silver nitrate? Express your answer with the appropriate units. Mass of AgCl=65.3 The reaction described in Part A required 3.46 L of magnesium chloride. What is the concentration of this magnesium chloride solution? Express your answer with the appropriate units.
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.28 L of a 0.267 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.60 L of calcium chloride. What is the concentration of this calcium chloride solution? Express your answer with the appropriate units
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.09 L of a 0.281 M solution of silver nitrate? Express your answer with the appropriate units. Part B The reaction described in Part A required 3.16 L of calcium chloride. What is the concentration of this calcium chloride solution? Express your answer with the appropriate units.
Solution Stoichiometry: When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out...
Solution Stoichiometry: When solutions of silver nitrate and potassium chloride are mixed, silver chloride precipitates out of solution according to the equation AgNO3(aq)+KCl(aq)→AgCl(s)+KNO3(aq). Part A. What mass of silver chloride can be produced from 1.46 L of a 0.218 M solution of silver nitrate? Part B. The reaction described in Part A required 3.17 L of potassium chloride. What is the concentration of this potassium chloride solution?
To solve stoichiometry problems, you must always calculate numbers of moles. Recall that molarity, M, is...
To solve stoichiometry problems, you must always calculate numbers of moles. Recall that molarity, M, is equal to the concentration in moles per liter: M=mol/L. When solutions of silver nitrate and magnesium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+MgCl2(aq)→2AgCl(s)+Mg(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.39 L of a 0.224 M solution of silver nitrate? Express your answer with the appropriate units. mass of AgCl= SubmitMy AnswersGive Up...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution...
When solutions of silver nitrate and calcium chloride are mixed, silver chloride precipitates out of solution according to the equation 2AgNO3(aq)+CaCl2(aq)→2AgCl(s)+Ca(NO3)2(aq) Part A What mass of silver chloride can be produced from 1.94 L of a 0.126 M solution of silver nitrate? Part B The reaction described in Part A required 3.49 L of calcium chloride. What is the concentration of this calcium chloride solution?