Question

the gas phase decompostion of no2 into no and o2 is second order and has a...

the gas phase decompostion of no2 into no and o2 is second order and has a rate constant o 1.1 if the intial concentrtion of no2 is 1.9*10^-2 m, how long will it take for 75% of the no2 to decompose/ what is the new concentration of no2 after 75% has decomposed ?

Homework Answers

Answer #1

For 2nd order reaction, rate law can be written as

1/CA -1/CA0=-kt

Here, CA0=1.9*10-2 M

k=1.1 M-1 s-1

Fraction of NO2 decomposed, x=75%=0.75

Concentration of NO2 reamining=(1-x)*CA0

                                                                =(1-0.75)*1.9*10-2=0.48*10-2 M

Putting these values in 2nd order rate equation

(1/1.9*10-2) –(1/0.48*10-2)=-1.1*t

t=141.5 sec

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g)...
1) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)  2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of N2O5 is 0.105 M, the concentration of N2O5 will be  Mafter 391 s have passed. 2) The gas phase decomposition of dinitrogen pentoxide at 335 K N2O5(g)2 NO2(g) + ½ O2(g) is first order in N2O5 with a rate constant of 4.70×10-3 s-1. If the initial concentration of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of 103 kJ/mol, and the first order rate constant is 3.77×10-5 min-1 at 272 K. What is the rate constant at 292 K?
In the second-order decomposition of substance X at 750 K, it is found that 15 %...
In the second-order decomposition of substance X at 750 K, it is found that 15 % of the sample has decomposed in 45 seconds. If the initial concentration of the substance X is 0.046 M Calculate the rate constant. Calculate the half-life. How long will it take for 65 % of X to decompose?
The decomposition of NO2 2NO2(g) → 2NO(g) + O2(g) is second-order in NO2. Given that the...
The decomposition of NO2 2NO2(g) → 2NO(g) + O2(g) is second-order in NO2. Given that the half-life for the inital concentration of NO2 equal to 0.848 M is 221 s, find the concentration of NO2 after 663 s.
[I-1] Consider the following data for the gas-phase decomposition of NO2:   2NO(g) ® 2NO(g) + O2(g)...
[I-1] Consider the following data for the gas-phase decomposition of NO2:   2NO(g) ® 2NO(g) + O2(g) Temperature (K) Initial [NO2] (mM) Initial Rate of NO2 Decomposition (mM/hr) 600 1.00 1.94 600 2.00 7.92 700 2.00 187 At 650 K, how many hours will it take for the NO2 concentration to drop from 5.00 mM to 1.00 mM
The reaction in which NO2 forms a dimer is second order in NO2 : 2NO2(g) --->...
The reaction in which NO2 forms a dimer is second order in NO2 : 2NO2(g) ---> N2O4(g) Rate = k [NO2]2 Calculate the rate constant for this reaction if it takes 0.0050 s for the initial concentration of NO2 to decrease from 0.50M to 0.25M.
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g)...
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g) + O2(g) The rate constant at 273 K is 2.3 ✕ 10-12 L/mol · s, and the activation energy is 111 kJ/mol. How long will it take for the concentration of NO2(g) to decrease from an initial partial pressure of 4.0 atm to 2.4 atm at 451 K? Assume ideal gas behavior.
The reaction 2NO(g) + O2(g) 2NO2(g) is second order in NO and first order in O2....
The reaction 2NO(g) + O2(g) 2NO2(g) is second order in NO and first order in O2. When [NO] = 0.2 M and [O2] = 3.4 M, the observed rate of disappearance of NO is 0.00001265 M/s. A) What is the value of the rate constant? B) What are the units of the rate constant? - M0 s-1 - M-3 s-1 - s-1 - M3 s - M-1 - M1 s1 - M-1 s-1 - M-1 s-2 - M-2 s-1 -...
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103...
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103 kJ. N2O52 NO2 + 1/2 O2 The rate constant at 319 K is 5.59×10-4 /s. The rate constant will be 6.37×10-3 /s at ______ K. PART 2 The activation energy for the gas phase isomerization of isopropenyl allyl ether is 123 kJ. CH2=C(CH3)-O-CH2CH=CH2CH3COCH2CH2CH=CH2 The rate constant at 432 K is 2.68×10-4 /s. The rate constant will be______ /s at 474 K.
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x...
"For the reaction 2 N2O5 --> 4 NO2 + O2 the rate constant is 6.82 x 10^-3 s^-1 at 70 degrees Celsius. The reaction is first order overall. If you start with 0.350 mol of dinitrogen pentoxide in a 2.0 L volume, how many miles will remain after 10 minutes? How long will it take for you to have 0.125 moles of reactant left? What is the half-life of dinitrogen pentoxide?" *Please show all work. * if it's out of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT