Question

A sample of 0.1387 g of an unknown monoprotic acid was dissolved in 25.0 mL of...

A sample of 0.1387 g of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.1150 MNaOH. The acid required 15.5 mL of base to reach the equivalence point.

Part B After 7.25 mL of base had been added in the titration, the pH was found to be 2.45. What is the Ka for the unknown acid? (Do not ignore the change, x, in the equation for Ka.)

Homework Answers

Answer #1

if monoprotic

mmol of acid = mmol of base

mmol of base = Mbase*Vbase = 15.5*0.1150 = 1.7825 mmol of base

mmol of acid = 1.7825

[Acid] = mmol/V = 1.7825/25 = 0.0713 M of acid

Molar MAss of acid = mass of acid / moles of acid = (0.1387)/(1.7825*10^-3) = 77.81206 g/mol

B)

V = 7.25 mL of base added.. pH = 2.45

find Ka

pH = pKa + log(A-/HA)

2.45 = pKa + log(A-/HA)

initially

mmol of HA = 1.7825

mmol of A- = 0

after mmol of base = MV = 7.25 *0.1150 = 0.83375 mmol of base is added

mmol of HA = 1.7825-0.83375 = 0.94875 mmol of acid left

mmol of A- = 0 + 0.83375 formed

2.45 = pKa + log(A-/HA)

2.45 = pKa + log(0.83375 /0.94875 )

pKa = 2.45 - log(0.83375 /0.94875 )

pKa = 2.506115

Ka = 10^-pKa = 10^-2.506115 = 0.00311 = 3.11*10^-3

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 0.312 g of an unknown acid (monoprotic) was dissolved in 26.5 mL of water...
1. A 0.312 g of an unknown acid (monoprotic) was dissolved in 26.5 mL of water and titrated with 0.0850 M NaOH. The acid required 28.5 mL of base to reach the equivalence point. What is the molar mass of the acid? After 16.0 mL of base had been added in the titration, the pH was found to be 6.45. What is the Ka for the unknown acid?
A sample of 0.2140 g of an unknown monoprotic acid was dissolved in 25.0 mL of...
A sample of 0.2140 g of an unknown monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.0950MNaOH. The acid required 27.4 mL of base to reach the equivalence point. What is the molar mass of the acid?
A 1.22 gram sample of an unknown monoprotic acid is dissolved in 25.0 mL of water...
A 1.22 gram sample of an unknown monoprotic acid is dissolved in 25.0 mL of water and titrated with a a 0.299 M aqueous potassium hydroxide solution. It is observed that after 10.4 milliliters of potassium hydroxide have been added, the pH is 3.039 and that an additional 19.4 mL of the potassium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? g/mol (2) What is the value of Ka for...
A 1.26 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water...
A 1.26 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water and titrated with a a 0.306 M aqueous potassium hydroxide solution. It is observed that after 12.7 milliliters of potassium hydroxide have been added, the pH is 3.193 and that an additional 19.3 mL of the potassium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? ____ g/mol (2) What is the value of Ka...
A 0.872 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water...
A 0.872 gram sample of an unknown monoprotic acid is dissolved in 50.0 mL of water and titrated with a a 0.424 M aqueous sodium hydroxide solution. It is observed that after 9.40 milliliters of sodium hydroxide have been added, the pH is 3.350 and that an additional 5.50 mL of the sodium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid? g/mol (2) What is the value of Ka for...
A 1.54 gram sample of an unknown monoprotic acid is dissolved in 30.0 mL of water...
A 1.54 gram sample of an unknown monoprotic acid is dissolved in 30.0 mL of water and titrated with a a 0.225 M aqueous potassium hydroxide solution. It is observed that after 19.3 milliliters of potassium hydroxide have been added, the pH is 7.171 and that an additional 34.5 mL of the potassium hydroxide solution is required to reach the equivalence point. (1) What is the molecular weight of the acid?  g/mol (2) What is the value of Ka for the...
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and...
A solution was made by dissolving 0.580 g of an unknown monoprotic acid in water, and diluting the solution to a final volume of 25.00 mL. This solution was then titrated with 0.100 M NaOH. It took 36.80 mL of NaOH to reach the equivalence point, at which point the pH was 10.42. a. Determine the molar mass of the unknown acid. b. Calculate what the pH was after 18.40 mL of NaOH was added during the titration. Hint: the...
A  25.00-mL  sample of propionic acid,  HC3H5O2,  of unknown concentration A  25.00-mL  sample of propionic acid,  HC3H5O2,  of unknown concentration  was titrated w
A  25.00-mL  sample of propionic acid,  HC3H5O2,  of unknown concentration A  25.00-mL  sample of propionic acid,  HC3H5O2,  of unknown concentration  was titrated with  0.151  M  KOH. The equivalence point was reached when was titrated with  0.151  M  KOH. The equivalence point was reached when  41.28  mL  of base had been added. What is the pH at the equivalence point?    41.28  mL  of base had been added. What is the pH at the equivalence point?     Ka   for propionic acid is    1.3×10–5   at  25°C.Ka   for propionic acid is    1.3×10–5   at  25°C. Select one: a. 8.93 b. 7.65 c. 9.47 d. 5.98 e. 9.11
A 25.0 mL sample of an acetic acid solution in titrated with a 0.09984 M NaOH...
A 25.0 mL sample of an acetic acid solution in titrated with a 0.09984 M NaOH solution. The equivalence point is reached when 37.5 mL of the base is added. Calculate the concentration of acetic acid in the 25.0 mL sample. Calculate the pH at the equivalence point (Ka acetic acid = 1.75x10^-5)
3.5g unknown monoprotic acid with a Ka of 4.9x 10 -5 is dissolved in enough water...
3.5g unknown monoprotic acid with a Ka of 4.9x 10 -5 is dissolved in enough water to make a 100mL solution. If the pH of this solution is 2.45, what is the molar mass of the acid?