Question

If it takes 3.36 x 10^-9 J of energy to eject an electron from the surface...

If it takes 3.36 x 10^-9 J of energy to eject an electron from the surface of a certain metal, calculate the frequency of this energy and the longest possible wavelenght in nm.

Homework Answers

Answer #1

Energy and frequency of a photon are related by E = hν, where h is Planck's constant (6.626 x 10^(-34) J s) and ν is the frequency of the photon. We have:

3.36 x 10-19 J = 6.626 x 10-34 Js x ν
ν = 3.36 x 10-19 J / 6.626 x 10-34 Js
ν = 5.07 x 1024 Hz.

On the other hand, wavelength and frequency of electromagnetic radiation are related by c = λν, where c is the speed of light (3.00 x 108 m/s).

So λ = c/ν = (3.00 x 108 m/s) / 5.07 x 1024 Hz. = 5.91x 10-17m = 59.1x10-18 = 59.1 a.m

( a = atto = 10-18 )

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine...
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine its frequency. Calculate the energy associated with this photon at 500.0 nm.    B. If it takes 3.36 x 10-19 J of energy to eject an electron from the surface of a certain metal, Calculate the frequency of this energy and the longest possible wavelength in nm.       C. Ionization energy is the energy required to remove an electron from an atom in...
If the minimum energy (work function) required to eject an electron from a copper surface by...
If the minimum energy (work function) required to eject an electron from a copper surface by the photoelectric effect is 7.81 ✕ 10^−19 J, what is the wavelength (in nanometers) of a photon of that energy?
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal,...
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal, Metal X. if the ejected electrons have a velocity of 6.13x10^5 m/s, what is the work function (binding energy) of Metal X? B) What is the longest wavelength of light (in nm) that can be used to eject electrons from the surface of Metal X? C) A different metal, Metal Y, has smaller binding energy. If the same frequency of light from Part A...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 507 nm. What is the work function W0 of this metal? Express your answer in electron volts. In the Compton effect, an X-ray photon of wavelength 0.16 nm is incident on a stationary electron. Upon collision with the electron, the scattered X-ray photon continues to travel in...
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is...
A metal alloy has a work function of E0 = 4.2 × 10?19 J. It is irradiated with light of different wavelengths, and the maximum kinetic energy of ejected electrons is measured. Part A: What is the maximum kinetic energy of ejected electron when 390-nm light is used? Part B:vWhat is the maximum electron speed when 390-nm light is used? Part C: Does 750-nm light have enough energy to eject an electron from the metal?
Photons with a frequency of 5.6*10^14 s-1 are required to eject electrons from potassium metal. what...
Photons with a frequency of 5.6*10^14 s-1 are required to eject electrons from potassium metal. what is the kinetic energy of the ejected electrons when 450 nm photons shine on the metal?
Steel and iron are often "galvanized" or coated with a thin layer of zinc metal to...
Steel and iron are often "galvanized" or coated with a thin layer of zinc metal to prevent corrosion (iron rusts but zinc does not). What is the longest wavelength of light (in nm) that can eject electron from zinc metal? (i.e. assume the electrons kinetic energy is very close to zero.) The work function of zinc = 4.3 eV and 1 electron- volt (eV) = 1.602 x 10 ^ -19 J.
If an atom were to emit a photon whose wavelength was 5200 A, how much energy...
If an atom were to emit a photon whose wavelength was 5200 A, how much energy did the atom lose. answer 3.8 x 10^-19. I got 3.8/ 3.6 x 10^-20 is it wrong ???? How much energy would a mole of these atoms lose? 230 kJ answer. Please explain and Cesium metal requires 4.78 x 10^-19 J of energy to remove an electron from its surface. What is the longest wavelength of radiation sufficient to eject such a photoelectron? Why...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT