Question

Do we still use the Bohr model of the atom?

Do we still use the Bohr model of the atom?

Homework Answers

Answer #1

Bohr's model of atomic structure is the first systematic approach to explain atomic sturcture. To account for the different anomalies, latter on this model was replaced by quantum mechanical model where electrons are treated as wave unlike in Bohr's model where electrons are treated as particles.Although, these days quatum mechanical model is used to explain complex atomic structure prolems, for basic understanding of atoms and for basic calculations Bohr model is still used.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We know that Bohr model (i.e., the “old” quantum mechanics) for the hydrogen atom is a...
We know that Bohr model (i.e., the “old” quantum mechanics) for the hydrogen atom is a semiclassical model and is not (always) consistent with quantum mechanics. Specifically, it is not (always) consistent with the uncertainty principle. Show why.
(Notes 6.3) Use the Bohr model of the atom for this problem. A) Calculate the lowest...
(Notes 6.3) Use the Bohr model of the atom for this problem. A) Calculate the lowest 3 energies (i.e., most bound) for the electron in hydrogen. B) in the Bohr model, only certain velocities are allowed. Use equation 4.24 and 4.28 to find the velocity of the lowest 3 states. Equations are: 4.24) mevr=ℏ n=1,2,3.... 4.28) rn=(n2 ℏ2)/)(meke2) n=1,2,3....
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will...
Let's use the Bohr model equations to explore some properties of the hydrogen atom. We will determine the kinetic, potential, and total energies of the hydrogen atom in the n=2 state, and find the wavelength of the photon emitted in the transition n=2?n=1. Find the wavelength for the transition n=3 ? n=2 for singly ionized helium, which has one electron and a nuclear charge of 2e. (Note that the value of the Rydberg constant is four times as great as...
Describe the Bohr model of the atom including sketches.
Describe the Bohr model of the atom including sketches.
(a) Use the Bohr model to calculate the period and frequency of an electron in the...
(a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period frequency (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency maximum frequency
(a) Use the Bohr model to calculate the period and frequency of an electron in the...
(a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period? frequency? (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency? maximum frequency?
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th...
4. (a) Use the Bohr model to calculate the frequency of an electron in the 149th Bohr orbit of the hydrogen atom. (b) Find the frequency of light emitted in the transition from the 149th orbit to the 145th orbit.
a) Use the Bohr model to calculate the period and frequency of an electron in the...
a) Use the Bohr model to calculate the period and frequency of an electron in the second Bohr orbit of the hydrogen atom. period frequency (b) What is the range of frequency of the light emitted by the hydrogen atom? minimum frequency 0 Hz maximum frequency ?????????? I just need help with finding the maximum frequency on part B. Thanks in advance! ps. Answer is not 3.29x10^15 Hz
A hydrogen atom is in the n = 4 state. In the Bohr model, how many...
A hydrogen atom is in the n = 4 state. In the Bohr model, how many electron wavelengths fit around this orbit?
Consider the Bohr model of the hydrogen atom in the ground state. Calculate the power radiated...
Consider the Bohr model of the hydrogen atom in the ground state. Calculate the power radiated classically (in the dipole approximation).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT