Question

The addition of 5.00 g of a compound to 250g of naphthalene lowered the freezing point...

The addition of 5.00 g of a compound to 250g of naphthalene lowered the freezing point of the solvent by 0.780 K. Calculate the molar mass of the compound. [Kf (naphthalene) = 6.94 K kg mol−1 ]

Homework Answers

Answer #1

we have below equation to be used:

delta Tf = Kf*mb

0.78 = 6.94 *mb

mb = 0.1124 molal

mass of solvent = 250 g

= 0.250 kg [using conversion 1 Kg = 1000 g]

we have below equation to be used:

number of mol,

n = Molality * mass of solvent in Kg

= (0.1124 mol/Kg)*(0.250 Kg)

= 2.81*10^-2 mol

mass of solute = 5.00 g

we have below equation to be used:

number of mol = mass / molar mass

2.81*10^-2 mol = (5.0 g)/molar mass

molar mass = 178 g/mol

Answer: 178 g/mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The addition of 100 g of a non-volatile unknown compound to 750 g CCl4 lowered the...
The addition of 100 g of a non-volatile unknown compound to 750 g CCl4 lowered the freezing point of the solvent by 10.5 K at 1 atm. The normal freezing point of pure CCl4 is 250 K and the molar enthalpy of fusion is 2.7 kJ/mol. Calculate the molar mass of the compound.
1. Ethylene glycol [CH2(OH)CH2(OH)] is a common automobile antifreeze. Calculate the freezing point and boiling point...
1. Ethylene glycol [CH2(OH)CH2(OH)] is a common automobile antifreeze. Calculate the freezing point and boiling point of a solution containing 323 g of ethylene glycol and 1025 g of water. (Kb and Kf for water are 0.52°C/m and 1.86°C/m, respectively.) freezing point ___  °C boiling point ___°C 2. Calculate the molar mass of naphthalene, the organic compound in mothballs, if a solution prepared by dissolving 10.0 g of naphthalene in exactly 200 g of benzene has a freezing point 2.0°C below...
Molar Mass Determination by Freezing Point Depression Calculate and enter the freezing point depression of a...
Molar Mass Determination by Freezing Point Depression Calculate and enter the freezing point depression of a solution of 74.2 g ethylene glycol (C2H6O2) in 422 g H2O. Kf for H2O is 1.86 °C kg/mol. °C 1homework pts Incorrect. Tries 2/5 Previous Tries A solution which contains 57.1 g of an unknown molecular compound in 383 g of water freezes at -5.32°C. What is the molar mass of the unknown? g/mol
Determine the freezing point of a solution that contains 78.8 g of naphthalene (C10H8, molar mass...
Determine the freezing point of a solution that contains 78.8 g of naphthalene (C10H8, molar mass = 128.16 g/mol) dissolved in 722 mL of benzene (d = 0.877 g/mL). Pure benzene has a melting point of 5.50°C and a freezing point depression constant of 4.90°C/m.
Calculate the freezing point and boiling point of a solution containing 16.0 g of naphthalene (C10H8)...
Calculate the freezing point and boiling point of a solution containing 16.0 g of naphthalene (C10H8) in 109.0 mL of benzene. Benzene has a density of 0.877 g/cm3. Part A Calculate the freezing point of a solution. (Kf(benzene)=5.12∘C/m.)
Calculate the freezing point and boiling point of a solution containing 13.6 g of naphthalene (C10H8)...
Calculate the freezing point and boiling point of a solution containing 13.6 g of naphthalene (C10H8) in 110.0 mL of benzene. Benzene has a density of 0.877 g/cm3. A)Calculate the freezing point of a solution. (Kf(benzene)=5.12∘C/m.) B)Calculate the boiling point of a solution. (Kb(benzene)=2.53∘C/m.)
The dissolution of 5.25 g of a substance in 565 g of benzene at 298 K...
The dissolution of 5.25 g of a substance in 565 g of benzene at 298 K raises the boiling point by 0.625°C. Note that Kf = 5.12 K kg/mol, Kb = 2.53 K kg/mol, and the density of benzene is 876.6 kg/m3 . Calculate the freezing point depression, the ratio of the vapor pressure above the solution to that of the pure solvent, the osmotic pressure, and the molar mass of the solute. * Pbenzene =103 Torr at 298 K.
Calculate the freezing point and boiling point of a solution containing 18.4 g of naphthalene (C10H8)...
Calculate the freezing point and boiling point of a solution containing 18.4 g of naphthalene (C10H8) in 114.0 mL of benzene. Benzene has a density of 0.877 g/cm3. (Kf(benzene)=5.12∘C/m.) (Kb(benzene)=2.53∘C/m.)
The normal freezing point of a certain organic solvent is 5.50 degrees C. When 0.3003 g...
The normal freezing point of a certain organic solvent is 5.50 degrees C. When 0.3003 g of naphthalene (C10H8) is dissolved in 9.9876 g of this solvent, the solution has a freezing point of 4.32 Degrees C. What is the freezing point depression constant (kf) in Degree C/m, for this solvent?
The dissolution of 5.25 g of a substance in 565 g of benzene at 298 K...
The dissolution of 5.25 g of a substance in 565 g of benzene at 298 K raises the boiling point by 0.625 K. Note that Kf = 5.12 K kg/mol, Kb = 2.53 K kg/mol, and the density of benzene is 876.6 kg/m3 . Calculate the: a.) freezing point depression b.) ratio of the vapor pressure above the solution to that of the pure solvent c.) the osmotic pressure d.) molar mass of the solute. Given: (P*benzene = 103 Torr...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT