Question

The equilibrium constant Kc for the reaction is 4.2 at 1650 degrees Celsius. Initially 0.73 mol...

The equilibrium constant Kc for the reaction is 4.2 at 1650 degrees Celsius. Initially 0.73 mol H2 and 0.73 mol CO2 are injected into 5.5L flask. Calculate the concentration of each species at equilibrium
.

Homework Answers

Answer #1

concentration of H2 = 0.73 / 5.5 = 0.1327 M

concentration of CO2 = 0.73 / 5.5 = 0.1327 M

H2      + CO2   ---------------> CO + H2O

0.133 0.133                           0         0

0.133 - x   0.133 - x                      x           x

Kc = [CO][H2O] / [CO2][H2]

4.2 = x^2 / (0.133 - x)^2

2.05 = x / 0.133 - x

x = 0.0892

concentration of each species at equilibrium :

[CO] = 0.0892 M

[H2O] = 0.0892 M

[CO2] = 0.0435 M

[H2] = 0.0435 M

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2...
The Equilibrium constant Kc for the reaction H2(g) + CO2(g) -> H2O(g) + CO(g) is 4.2 at 1650 deg C. Initially .74 mol H2 and .74 mol CO2 are injected into a 4.6-L flask. Calculate the concentration of each species at equilibrium. H2= CO2 = H2O= CO=
The equilibrium constant Kc for the reaction H2(g) + CO2(g) = CO(g) + H20(g) is 5.1...
The equilibrium constant Kc for the reaction H2(g) + CO2(g) = CO(g) + H20(g) is 5.1 at 1700 C. Initially 0.65 mol of H2, 0.1 mol of CO and 0.65 mol of CO2 are injected into a 2.5-L flask. Calculate the concentraion of each species at equilibrium. Please show the steps so I can understand how to solve the problem. Thank you.
The equilibrium constant Kc for the following reaction is 4.59 × 10-7 at 730oC. 2HBr(g) ⇌...
The equilibrium constant Kc for the following reaction is 4.59 × 10-7 at 730oC. 2HBr(g) ⇌ H2(g) + Br2(g) Suppose 3.20 mol HBr and 1.50 mol H2 are added to a rigid 12.0-L flask at 730oC. What is the equilibrium concentration (in M) of Br2?
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730°...
The equilibrium constant Kc for the reaction H2(g) + Br2(g) ⇆ 2HBr(g) is 2.180×106 at 730° C. Starting with 4.20 moles of HBr in a 17.8−L reaction vessel, calculate the concentrations of H2,Br2, and HBr at equilibrium. 17. The equilibrium constant Kc for the reaction below is 0.00771 at a certain temperature. Br2(g) ⇌ 2Br(g) If the initial concentrations are [Br2] = 0.0433 M and [Br] = 0.0462 M, calculate the concentrations of these species at equilibrium. For the reaction...
For an equilibrium reaction 2 A + 3 B ↔ 2 C, the equilibrium constant Kc...
For an equilibrium reaction 2 A + 3 B ↔ 2 C, the equilibrium constant Kc = 1.6×103. For the reaction C ↔ A + 3/2 B, the value of equilibrium constant, Kc', is [Y]. (Fill in the blank. Show the value only. Report with proper number of significant figures and do not use scientific notation.) -------- 4. A sealed 1.0 L flask is charged with 0.500 mol of I2 and 0.500 mol of Br2. An equilibrium reaction ensues: I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <-------> 2 HI(g) Kc=53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
The equilibrium constant KC KC for the reaction PCL3+ CL2 is in equilibrium yielding PCL 5...
The equilibrium constant KC KC for the reaction PCL3+ CL2 is in equilibrium yielding PCL 5 equals 2.7 at 330°C. a A sample of 37.0 g of PCL5 is placed in a 2.1 L reaction vessel and heated to 330°C. What are the equilibrium concentrations of all of the species? PCL5= M PCL3 CO2= M
1. For the reaction: 2NOCl(g) 2NO(g) + Cl2(g), Kc = 1.6 x 10− 5 . What...
1. For the reaction: 2NOCl(g) 2NO(g) + Cl2(g), Kc = 1.6 x 10− 5 . What are the equilibrium concentrations of each species if 1.0 mole of NOCl is initially placed in an empty 2.0 L flask? 2. A reaction vessel is charged with hydrogen iodide, which partially decomposes to molecular hydrogen and iodine: 2HI (g) H2(g) + I2(g): When the system comes to equilibrium at 425 °C, PHI = 0.708 atm and 2 2 P P H I =...
Furamate + H2O <--> malate . At 25 degrees celsius the equilibrium constant K= (activity Malate/activity...
Furamate + H2O <--> malate . At 25 degrees celsius the equilibrium constant K= (activity Malate/activity furamatete)=4.0. The activity of malate and furamate are defined on the molatiry concentration scale (a=c in a dilute solution) a) What is the standard Gibbs free energy change for the reaction at 25 degrees celsius. b) What is the Gibbs free energy change for the reaction at equilibrium? c) What is the Gibbs free energy change when 1 mol of 0.1M furamate is converted...