Question

Astronomers have detected hydrogen atoms in interstellar space in the n =744 excited state. Suppose an...

Astronomers have detected hydrogen atoms in interstellar space in the n =744 excited state. Suppose an atom in this excited state undergoes a transition from n =744 to n = 731.

What is the atom's change in energy as a result of this transition?

What is the wavelength of radiation corresponding to this transition?

What kind of telescope would astronomers need in order to detect radiation of this wavelength?

Homework Answers

Answer #1

A) change in energy

Apply Rydberg Formula

E = R*(1/nf^2 – 1/ni ^2)

R = -2.178*10^-18 J

Nf = final stage/level

Ni = initial stage/level

E = Energy per unit (i.e. J/photon)

E = (-2.178*10^-18)*(1/731^2 – 1/744 ^2)

E = 1.41192*10^-25 J/photon (released)

b)

find WL :

WL = h c / E

h = Planck Constant = 6.626*10^-34 J s

c = speed of particle (i.e. light) = 3*10^8 m/s

E = energy per particle J/photon

WL = wavelength in meters

WL = (6.626*10^-34)(3*10^8)/(1.41192*10^-25)

WL = 1.4078 m

This is RADIO waves adiation

c)

we need RADIO telescopes

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Astronomers have detected hydrogen atoms in interstellar space in the n=746 excited state. Suppose an atom...
Astronomers have detected hydrogen atoms in interstellar space in the n=746 excited state. Suppose an atom in this excited state undergoes a transition from n=746 to n=731. What is the atoms change in energy as the result of this transition? What is the wavelength of radiation corresponding to this transition? What kind of telescope would astronomers need in order to detect radiation of this wavelength?
A hydrogen atom at rest is initially in an excited state corresponding to n = 5....
A hydrogen atom at rest is initially in an excited state corresponding to n = 5. a- Give the quantum numbers (l) and (m) which correspond to n = 5 b- What is the ionization energy of the atom in this state? c- What is the frequency of the photon emitted when it returns to its ground state n = 1? d- Estimate the momentum and the kinetic energy of the atom's recoil during the photon emission. mH= 1.007825? 1?...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The excited state is unstable, and it tends to finally return to its ground state. (a) How many possible wavelengths will be emitted as the atom returns to its ground state? draw a diagram of energy levels to illustrate answer     Answer: (number) ________    (b) Calculate the shortest wavelength emitted.        Answer: ________
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
The electron in a hydrogen atom is excited to the n = 6 shell and emits...
The electron in a hydrogen atom is excited to the n = 6 shell and emits electromagnetic radiation when returning to lower energy levels. Determine the number of spectral lines that could appear when this electron returns to the lower energy levels, as well as the wavelength range in nanometers.
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
Due to the presence everywhere of the cosmic background radiation, the minimum possible temperature of a...
Due to the presence everywhere of the cosmic background radiation, the minimum possible temperature of a gas in interstellar or intergalactic space is not 0 K but 2.7 K. This implies that a significant fraction of the molecules in space that can be in a low-level excited state may, in fact, be so. Subsequent de-excitation would lead to the emission of radiation that could be detected. Consider a (hypothetical) molecule with just one possible excited state. (a) What would the...
In radio astronomy, hydrogen atoms are observed in which, for example, radiative transitions from n=109 to...
In radio astronomy, hydrogen atoms are observed in which, for example, radiative transitions from n=109 to n=108 occur. What are the frequency and wavelength of the radiation emitted in this transition?
When an electron moves from level n= 4 to level n =5 in an excited hydrogen...
When an electron moves from level n= 4 to level n =5 in an excited hydrogen atom, what amount of energy is required for this electronic transition? Please show your full work!! Where you got number from step by step
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT