Question

Carbon dioxide can be reacted with hydrogen to produce carbon monoxide and water. Write the balanced...

Carbon dioxide can be reacted with hydrogen to produce carbon monoxide and water. Write the balanced equation for this entirely gas-phase reaction:

Balance Equation:____________

At a temperature of 405 ?, this reaction has a pressure equilibrium constant of ?? = 1.44. Consider a system held at this temperature where the initial pressures of hydrogen, carbon dioxide, water vapor, and carbon monoxide are each equal to 0.40 atm. Will this reaction proceed in the forward or reverse direction upon equilibration? ___________________

In the space below and on the following page, calculate the equilibrium pressures of all molecular species, given the above initial conditions:

??O2,?q = ___________ ??2,?q =___________ ??2?,?q =___________ ??O,?q =___________

Explain below how the equilibrium constant here would be different for this reaction if it were performed in the aqueous phase. (Consider water in the aqueous phase, and recall the rules for equilibrium constants involving pure solids and liquids…)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The...
Solid carbon can react with gaseous water to form carbon monoxide gas and hydrogen gas. The equilibrium constant for the reaction at 700.0 K is Kp=1.60×10−3. If a 1.55-L reaction vessel initially contains 247 torr of water at 700.0 K in contact with excess solid carbon, find the percent by mass of hydrogen gas of the gaseous reaction mixture at equilibrium.
The equilibrium constant for the gas phase reaction of carbon monoxide with water to form carbon...
The equilibrium constant for the gas phase reaction of carbon monoxide with water to form carbon dioxide and molecular hydrogen is 0.58 at 1000 degrees C. If a mixture of 0.0200 molar CO, 0.0100 molar H2O, and 0.0050 molar CO2 is allowed to come to equilibrium, what will the equilibrium concentrations of all four species be? Do the units matter if you use 20 mM CO, 10 mM H2O, and 5 mM CO2, for the inital concentrations? Please show all...
An equilibrium mixture contains 0.500 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.500 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. CO(g) +H20 (g) --> <-- CO2 (g) + H2 (g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.450 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container CO(g) + H2O(g) <===> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas)...
An equilibrium mixture contains 0.650 mol of each of the products (carbon dioxide and hydrogen gas) and 0.200 mol of each of the reactants (carbon monoxide and water vapor) in a 1.00-L container. CO(g) + H2O(g) <-----> CO2(g) + H2(g) How many moles of carbon dioxide would have to be added at constant temperature and volume to increase the amount of carbon monoxide to 0.300 mol once equilibrium has been reestablished?
The balanced equation for the reaction of iron (III) oxide with carbon monoxide to produce carbon...
The balanced equation for the reaction of iron (III) oxide with carbon monoxide to produce carbon dioxide and iron metal is given below. Fe2O3 (s) + 3 CO (g) --> 2 Fe (s) + 3 CO2 (g) Using the balanced equation, determine the mass of iron metal (Fe(s)) in grams that can be made if this reaction is performed using 225.3 grams of iron (III) oxide (Fe2O3) and 200.1 grams of carbon monoxide.
At 225oC, nitrogen dioxide, NO2, reacts with carbon monoxide, CO, to produce carbon dioxide, CO2, and...
At 225oC, nitrogen dioxide, NO2, reacts with carbon monoxide, CO, to produce carbon dioxide, CO2, and nitrogen monoxide, NO, according to the following equation. NO2(g) + CO(g)  CO2(g) + NO(g) The experimentally determined rate law for the reaction is, Rate = kobs[NO2]2 and NO3(g) has been experimentally identified as an intermediate in the reaction. a. Explain why the mechanism for this reaction cannot consist of a single step; that is, based on the experimental data provided above, why must...
Write the balanced equation for the combustion of isooctane (C8H18) to produce carbon dioxide and water....
Write the balanced equation for the combustion of isooctane (C8H18) to produce carbon dioxide and water. Use the smallest possible integers to balance the equation. Also, separate the + sign with 1 space. Remember that a combustion reaction requires oxygen. Use the smallest whole number coefficients in your balanced equation. Write the reactants in the order isooctane then oxygen. Write the products in the order carbon dioxide then water. Assuming gasoline is 90.0% isooctane, with a density of 0.692 g/mL,...
A) The synthesis of methanol from carbon monoxide and hydrogen gas is described by the following...
A) The synthesis of methanol from carbon monoxide and hydrogen gas is described by the following chemical equation: CO(g)+2H2(g)⇌CH3OH(g) The equilibrium constant for this reaction at 25 ∘Cis Kc=2.3×104. In this trial, you will use the equilibrium-constant expression to find the concentration of methanol at equilibrium, given the concentration of the reactants. Suppose that the molar concentrations for CO and H2 at equilibrium are [CO] = 0.04 M and [H2] = 0.04 M. Use the formula you found in Part...
Nitric acid and nitrogen monoxide react to form nitrogen dioxide and water, like this: 2HNO3 (aq)...
Nitric acid and nitrogen monoxide react to form nitrogen dioxide and water, like this: 2HNO3 (aq) + NO (g) → 3NO2 (g) + H2O (l) At a certain temperature, a chemist finds that a 9.5L reaction vessel containing a mixture of nitric acid, nitrogen monoxide, nitrogen dioxide, and water at equilibrium has the following composition: compound amount HNO3 15.5g NO 16.6g NO2 22.5g H2O 189.0g Calculate the value of the equilibrium constant Kc for this reaction. Round your answer to...