Question

Explain how knowing the order of a reaction (based on its Rate Law) gives the ability...

Explain how knowing the order of a reaction (based on its Rate Law) gives the ability to know the effect of that reactant on the rate of the reaction. Make sure to use zero order, 1st order, and 2nd order effects in your essay.

Homework Answers

Answer #1

Order of the reaction has a direct relation to effect of reactant.

For Zero order:

rate = K*[A]^0

rate =K

since rate is independent of concentration of reactant, reactant doesn't effect rate of reaction.

For 1st order:

rate = k[A]^1

rate= k[A]

Here if we double the concentration of reactant, rate will be doubled. Its direct relation between rate and concentration.

For 2nd order:

rate = k[A]^2

Here if we double the concentration of reactant, rate will become 4 times. Its square relation between rate and concentration.

So order help us understand effect of reactant on rate

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st...
A reaction occurs via the following sequence of elementary steps. What is the reaction intermediate? 1st step: A + 2B → 2C 2nd step: 2C → D Question 9 options: A) B B) There is no intermediate C) C D) A E) D A reaction occurs via the following sequence of elementary steps. What is the rate law based on this reaction mechanism? 1st step: A + B → 2C + D slow 2nd step: C → E fast 3rd...
How does collision theory explain the effect of concentration on reaction rate? The reaction rate depends...
How does collision theory explain the effect of concentration on reaction rate? The reaction rate depends on the sum of the reactant concentrations. The reaction rate depends on the sum of the product concentrations. The reaction rate depends on the product of the product concentrations. The reaction rate depends on the product of the reactant concentrations.
A zero order reaction has a rate constant of 0.28 M s-1. How long will it...
A zero order reaction has a rate constant of 0.28 M s-1. How long will it take for the reactant to reach 30% of its original concentration?
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 7.00×10−2M after 135 s and 2.50×10−2M after 315 s . What is the rate constant for this reaction? Express your answer with...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 8.00×10−2M after 200 s and 2.50×10−2Mafter 390 s . What is the rate constant for this reaction? Express your answer with the...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k ------------ Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 110 s and 4.00×10−2M after 375 s . What is the rate constant for this reaction? ---------- Part B...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they...
The integrated rate laws for zero-, first-, and second-order reaction may be arranged such that they resemble the equation for a straight line,y=mx+b. Order Integrated Rate Law Graph Slope 0 [A]=−kt+[A]0 [A] vs. t −k 1 ln[A]=−kt+ln[A]0 ln[A] vs. t −k 2 1[A]= kt+1[A]0 1[A] vs. t k Part A The reactant concentration in a zero-order reaction was 5.00×10−2M after 200 s and 2.50×10−2M after 310 s . What is the rate constant for this reaction? Express your answer with...
Write the rate law of the general equation given below and explain what is meant by...
Write the rate law of the general equation given below and explain what is meant by the overall order and individual reactant order. aA + bB + cC → dD + eE A. Are the reaction order and stoichiometric coefficient related to each other? B. Does the reaction order have to always be a positive integer number? C. What is the rate constant? D. Does the rate constant depend on temperature? Be able to use stoichiometry to define a single...
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car...
Learning Goal: To understand how to use integrated rate laws to solve for concentration. A car starts at mile marker 145 on a highway and drives at 55 mi/hr in the direction of decreasing marker numbers. What mile marker will the car reach after 2 hours? This problem can easily be solved by calculating how far the car travels and subtracting that distance from the starting marker of 145. 55 mi/hr×2 hr=110 miles traveled milemarker 145−110 miles=milemarker 35 If we...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of...
The integrated rate law allows chemists to predict the reactant concentration after a certain amount of time, or the time it would take for a certain concentration to be reached. The integrated rate law for a first-order reaction is: [A]=[A]0e−kt Now say we are particularly interested in the time it would take for the concentration to become one-half of its initial value. Then we could substitute [A]02 for [A] and rearrange the equation to: t1/2=0.693k This equation calculates the time...