Question

Rate constants for the reaction NO2(g)+CO(g)→NO(g)+CO2(g) are 1.3M−1s−1 at 700 K and 23.0M−1s−1 at 800 K....

Rate constants for the reaction NO2(g)+CO(g)→NO(g)+CO2(g) are 1.3M−1s−1 at 700 K and 23.0M−1s−1 at 800 K. What is the value of the activation energy in kJ/mol? What is the rate constant at 780 K ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)?NO(g)+CO2(g) are 1.3M?1s?1 at 700 K and 23.0M?1s?1 at 800 K. Part A What is the value of the activation energy in kJ/mol? Ea = 134   kJ/mol   SubmitMy AnswersGive Up Correct Part B What is the rate constant at 770K ? Express your answer using two significant figures. k =   /(M?s)
Rate constants for the reaction NO2(g)+CO(g)→NO(g)+CO2(g) are 1.3M−1s−1 at 700 K and 23.0M−1s−1 at 800 K....
Rate constants for the reaction NO2(g)+CO(g)→NO(g)+CO2(g) are 1.3M−1s−1 at 700 K and 23.0M−1s−1 at 800 K. What is the rate constant at 760 K ? Express your answer using two significant figures.
The reaction between nitrogen dioxide and carbon monoxide is NO2(g)+CO(g)→NO(g)+CO2(g) The rate constant at 701 K...
The reaction between nitrogen dioxide and carbon monoxide is NO2(g)+CO(g)→NO(g)+CO2(g) The rate constant at 701 K is measured as 2.57 M−1⋅s−1 and that at 895 K is measured as 567 M−1⋅s−1. The activation energy is 1.5×102 kJ/mol. Predict the rate constant at 525 K . Express the rate constant in liters per mole-second to three significant figures. ___________________________ L/mol*s
The reaction between nitrogen dioxide and carbon monoxide is NO2(g)+CO(g)→NO(g)+CO2(g) The rate constant at 701 K...
The reaction between nitrogen dioxide and carbon monoxide is NO2(g)+CO(g)→NO(g)+CO2(g) The rate constant at 701 K is measured as 2.57 M−1⋅s−1 and that at 895 K is measured as 567 M−1⋅s−1. The activation energy is 1.5×102 kJ/mol. Predict the rate constant at 525 K . Express the rate constant in liters per mole-second to three significant figures.
The rate constant for the reaction below was determined to be 3.241×10-5 s–1 at 800 K....
The rate constant for the reaction below was determined to be 3.241×10-5 s–1 at 800 K. The activation energy of the reaction is 215 kJ/mol. What would be the value of the rate constant at 9.10×102 K? N2O(g) --> N2(g) + O2(g) I'm having trouble calculating the rate constant with the arrhenius equation that deals with two temps, could you show me the step by step how to do this?
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of 103 kJ/mol, and the first order rate constant is 3.77×10-5 min-1 at 272 K. What is the rate constant at 292 K?
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g)...
The decomposition of NO2(g) occurs by the following bimolecular elementary reaction. 2 NO2(g) → 2 NO(g) + O2(g) The rate constant at 273 K is 2.3 ✕ 10-12 L/mol · s, and the activation energy is 111 kJ/mol. How long will it take for the concentration of NO2(g) to decrease from an initial partial pressure of 4.0 atm to 2.4 atm at 451 K? Assume ideal gas behavior.
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate...
1.) The reaction C4H8(g)⟶2C2H4(g) has an activation energy of 262 kJ/mol. At 600.0 K the rate constant is 6.1×10−8 s−1. What is the value of the rate constant at 860.0 K? ?=_____ s−1 2.) A certain reaction has an activation energy of 47.01 kJ/mol. At what Kelvin temperature will the reaction proceed 7.50 times faster than it did at 357 K? ____ K 3.) Consider this reaction data. A⟶products T (K) k (s–1) 275 0.383 875 0.659 If you were...
the following reaction has an activation energy of 262 kJ/mol. C4H8(g)->2C2H4(g). At 600 K the rate...
the following reaction has an activation energy of 262 kJ/mol. C4H8(g)->2C2H4(g). At 600 K the rate constant is 6.1*10^-8s^-1. What is the value of the rate constant at 765.0 K?
Consider the reaction, NO2(g) + CO(g) → NO(g) + CO2(g), for which the rate law has...
Consider the reaction, NO2(g) + CO(g) → NO(g) + CO2(g), for which the rate law has been determined to be: Rate = [NO2]2[CO]. Which of the following statements is/are false? I. The reaction can occur in a single step. II. The rate of change of NO2 is twice the rate of change of CO. III. Doubling the concentrations of NO2 and CO simultaneously will increase the rate by a factor of four.