Derive Clapeyron equation and Clausius modification for liquid-vapor equilibrium conditions.
In equilibrium:
dGa = Va*dp -Sa*dT
dGb = Vb*dp -Sb*dT
so
dGa =dGb (in phase equilibriua)
then
Va*dp -Sa*dT = Vb*dp -Sb*dT
solve
(Va-Vb)*dP = (Sa-Sb)*dT
which is
dV*dP = dS*dT
so
dP/dT = dS/dV
since
dG = dH - T*dS = 0
then
dG = Ga- Gb = 0
so
dS = dH/T
then
dP/dT = dS/dV
turns to
dP/dT = dS/dV = dH/(T*dV)
dP/dT = dH/(T*dV)
we know that
dP= dH/(T*dV)dT
can be integrated if we assume dH is constnat i.e. vapor enthalpy and dV is change of vapor
since vapor volume >> liqudi volume, assume dV = Vgas
dP= Henthalpy/(T*Vgas)dT
(P2-P1) = Henthalpy/(Vgas)( lnT1 - lnT2)
so
Vg = RT/p (for ideal gas)
substitute
dP / DT = P*dH/(R*T^2)
then
d(lnp) = dH/R*dT/(T^2)
finally
ln(p2) - ln(p1) = dH/R*(1/T1- 1/T2)
which is clasisus clapeyron equation
Get Answers For Free
Most questions answered within 1 hours.