Knowing that the ∆G for the combustion of liquid ethanol (CH3CH2OH(l)) at the constant temperature of 302.1K and standard pressure is -1328.4 kJ/mol, derive the standard molar entropy of liquid ethanol. Give your answer in J K-1 mol-1. Use the following values, assuming that ∆H and ∆S are temperature-independent within the range considered: ∆fHo(CO2(g)) = -398.8 kJ/mol ∆fHo(H2O(l)) = -288.3 kJ/mol ∆fHo(Ethanol(l)) = -276.6 kJ/mol Smo(CO2(g)) = 211.1 J K-1 mol-1 Smo(H2O(l)) = 72.4 J K-1 mol-1 Smo(O2(g))= 202.8 J K-1 mol-1
The reaction is
C2H5OH + 3O2 - - - - - - > 2CO2 + 3H2O
ΔHreaction = ΣΔHf (products) - ΣΔHf(reactants)
=2 ΔHf (CO2) + 3 ΔHf (H2O) - ΔHf (C2H5OH) - 3 ΔHf (O2)
= 2x (-398.8 kJ/mol) + 3 x (-288.3 kJ/mol) - (- 276.6 kJ/mol) - 0 = - 1385.9 kJ/mol
We know
ΔGreaction = ΔHreaction - TΔSreaction
ΔSreaction = (ΔHreaction - ΔGreaction ) / T
= (-1385.9 kJ/mol - (-1328.4 kJ/mol)) / 302.1K
= - 0.1903 kJ/mol K = - 190.3 J/mol
ΔSreaction = ΣSmo ( products) - ΣSmo(reactants)
=2 Smo (CO2) +3 Smo (H2O) - Smo(C2H5OH) - 3 Smo(O2 )
-190.3 J/mol K = 2x211.1 J/mol K + 3x72.4 J/mol K - Smo(C2H5OH) - 3x202.8 J/mol K
So Smo(C2H5OH) = - 221.3 J/mol K
Get Answers For Free
Most questions answered within 1 hours.