Question

Knowing that the ∆G for the combustion of liquid ethanol (CH3CH2OH(l)) at the constant temperature of...

Knowing that the ∆G for the combustion of liquid ethanol (CH3CH2OH(l)) at the constant temperature of 302.1K and standard pressure is -1328.4 kJ/mol, derive the standard molar entropy of liquid ethanol. Give your answer in J K-1 mol-1. Use the following values, assuming that ∆H and ∆S are temperature-independent within the range considered: ∆fHo(CO2(g)) = -398.8 kJ/mol ∆fHo(H2O(l)) = -288.3 kJ/mol ∆fHo(Ethanol(l)) = -276.6 kJ/mol Smo(CO2(g)) = 211.1 J K-1 mol-1 Smo(H2O(l)) = 72.4 J K-1 mol-1 Smo(O2(g))= 202.8 J K-1 mol-1

Homework Answers

Answer #1

The reaction is

C2H5OH + 3O2 - - - - - - > 2CO2 + 3H2O

ΔHreaction = ΣΔHf (products) - ΣΔHf(reactants)

=2 ΔHf (CO2) + 3 ΔHf (H2O) - ΔHf (C2H5OH) - 3 ΔHf (O2)

= 2x (-398.8 kJ/mol) + 3 x (-288.3 kJ/mol) - (- 276.6 kJ/mol) - 0 = - 1385.9 kJ/mol

We know

ΔGreaction = ΔHreaction - TΔSreaction

ΔSreaction = (ΔHreaction - ΔGreaction ) / T

= (-1385.9 kJ/mol - (-1328.4 kJ/mol)) / 302.1K

= - 0.1903 kJ/mol K = - 190.3 J/mol

ΔSreaction = ΣSmo ( products) - ΣSmo(reactants)

=2 Smo (CO2) +3 Smo (H2O) - Smo(C2H5OH) - 3 Smo(O2 )

-190.3 J/mol K = 2x211.1 J/mol K + 3x72.4 J/mol K - Smo(C2H5OH) - 3x202.8 J/mol K

So Smo(C2H5OH) = - 221.3 J/mol K

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Ethylene can be converted to ethanol according to the following reaction: C2H4(g) + H2O(g) ⇌ CH3CH2OH(l)...
Ethylene can be converted to ethanol according to the following reaction: C2H4(g) + H2O(g) ⇌ CH3CH2OH(l) The reaction is catalyzed by H+(aq). You will use the following table for this problem: Substance:    ΔGf (kJ/mol) C2H4(g)    74.2 H2O(g)     -231.9 CH3CH2OH(l) -177.8 Part 1: What is ΔGo of this reaction in kJ/mol? Part 2: What is the value of K for this reaction given your value of ΔGo in part 1 at 25oC?
When 1.000 g of propane gas (C3H8) is burned at 25ºC and 1.00 atm, H2O (l)...
When 1.000 g of propane gas (C3H8) is burned at 25ºC and 1.00 atm, H2O (l) and CO2 (g) are formed with the evolution of 50.33 kJ of energy. Substance ∆Hºf (kJ mol -1) Sº (J mol -1 K -1) H2O (l) - 285.8 69.95 CO2 (g) - 393.5 213.7 O2 (g) 0.0 205.0 C3H8 (g) ? 270.2 Calculate the molar enthalpy of combustion, ∆Hºcomb , of propane and the standard molar enthalpy of formation, ∆Hºf , of propane gas.
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat...
A 12.8 g sample of ethanol (C2H5OH) is burned in a bomb calorimeter with a heat capacity of 5.65 kJ/°C. The temperature of the calorimeter and the contents increases from 25°C to 35°C. What is the heat of combustion per mole of ethanol? The molar mass of ethanol is 46.07 g/mol. C2H5OH (l) + 3 O2 (g) -----> 2 CO2 (g) + 3 H2O (g) ΔE = ?
When ethanol (CH3CH2OH) is combusted, such as when in a gasoline blend, the following reaction occurs:...
When ethanol (CH3CH2OH) is combusted, such as when in a gasoline blend, the following reaction occurs: 2CH3CH2OH(l)+6O2(g)--->4CO2(g)+6H2O(g) Based on the standard free energies of formation given in the table below, what is the standard free energy change for this reaction? Substance ?G?f (kJ/mol) CH3CH2OH(l) -174.9 O2(g) 0 CO2(g) -394.4 H2O(g) -228.6 Express your answer to one decimal place and include the appropriate units.
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation...
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation (ΔH°f ) of liquid methanol (CH3OH) from its elements. 2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l)     ΔH°rxn = −1452.8 kJ C(graphite) + O2(g) → CO2(g)                               ΔH°rxn = −393.5 kJ 2 H2(g) + O2(g) → 2 H2O(l)                                     ΔH°rxn = −571.6 kJ (1) −238.7 kJ/mol    (2) 487.7 kJ/mol       (3) −548.3 kJ/mol    (4) 20.1 kJ/mol         (5) 47.1 kJ/mol
CH6N2 (l) + 5 O2 (g) → + 2 N2 (g) + 2 CO2 (g) +...
CH6N2 (l) + 5 O2 (g) → + 2 N2 (g) + 2 CO2 (g) + 6 H2O (l) ΔH = -2600 kJ What is the Molar Mass H2O (2 decimal places Minimum)? In the last conversion factor what is the ratio of Heat ÷ moles H2O from the balanced equation (4 SF Minimum) - Is the sign + or -? ΔH (in kJ) - Is the sign + or -? The specific heat of ethanol is 2.46 J/goC. When...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g)...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g) + 3 O2(g) ----> 2 CO2(g) + 2 H2O Calculate the change of Hf for ethylene based on the following standard molar enthalpies of formation. molecules Change in Hf (kJ/mol) CO2 -393.5 H2O -241.8
Methanol (CH3OH) has been proposed as an alternative fuel. Calculate the standard enthalpy of combustion per...
Methanol (CH3OH) has been proposed as an alternative fuel. Calculate the standard enthalpy of combustion per gram of liquid methanol. Standard Heats of Formation: CH3OH(l) = –239 kJ/mol O2(g) = 0 kJ/mol CO2(g) = –393.5 kJ/mol H2O(l) = –286 kJ/mol ΔH =_______ kJ/g CH3OH
The standard enthalpy change of combustion [to CO2(g) and H2O(l)] at 25°C of the organic solid...
The standard enthalpy change of combustion [to CO2(g) and H2O(l)] at 25°C of the organic solid diphenyl phthalate, C20H14O4(s), is determined to be -9364.7 kJ mol-1. What is the Hf° of C20H14O4(s) based on this value?    Use the following data: Hf° H2O (l) = -285.83 kJ mol-1 ;   Hf° CO2(g) = -393.51 kJ mol-1 __________ kJ mol-1
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g)...
Calculate ΔG∘ (in kJ/mol) for the following reaction at 1 atm and 25 °C: C2H6 (g) + O2 (g)  → CO2 (g) + H2O (l) (unbalanced) ΔHf C2H6 (g) = -84.7 kJ/mol; S C2H6 (g) = 229.5 J/K⋅mol; ΔHf ∘ CO2 (g) = -393.5 kJ/mol; S CO2 (g) = 213.6 J/K⋅mol; ΔHf H2O (l) = -285.8 kJ/mol; SH2O (l) = 69.9 J/K⋅mol; SO2 (g) = 205.0 J/K⋅mol