Question

Consider the reaction, Ag2CO3(s) ↔ Ag2O(s) + CO2(g), for which the following data have been reported...

Consider the reaction, Ag2CO3(s) ↔ Ag2O(s) + CO2(g), for which the following data have been reported for the equilibrium constant (Keq) measured at four different temperatures:

   T =          350 K                 400 K                 450 K                   500 K

    Keq =      3.98 x 10-4         1.41 x 10-2        1.86 x 10-1           1.48

(a). Does this data indicate that the reaction is endothermic or exothermic? Give a rationale for your answer.

(b). Can this data be used to calculate a value for the ∆rHo of the reaction? If you answer Yes, explain how you would go about doing that.

Homework Answers

Answer #1

a)

First, analyse the trend as T increases... this implies the system gets more ENERGY

As T increases, Keq increases as well

this implies:

Keq = [Products] / [reactants]

now, as K increases, this implies  [Products] /increases and [reactants] decreases

therefore, this must be ENDOTHERMIC

that is, as we add more energy, the equilibrium favours the products

b)

Yes, this could be done, we must apply vant Hoff equation

it relates:

ln(K) = -H/R*(1/T) + S/R

in which we can fit many data as follows:

ln(K2/K1) = -H/(R) * (1/T2 - 1/T1)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g) Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) Part A 315 K Express your answer using one decimal place. ΔG∘ =   kJ   Part B 1075 K Express your answer using one decimal place. ΔG∘ =   kJ   Part C 1440 K Express your answer using one decimal place. ΔG∘ = kJ  
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) A. 1090 K B.1405 K C.Predict whether or not the reaction in part A will be spontaneous at 320 K . D. Predict whether or not the reaction in part B will be spontaneous at 1090. E. Predict whether or not the reaction in part C will be spontaneous...
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG∘ for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range.) Part A 310 K Part B 1035K Part C 1455K in kJ
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG for this reaction at each of the following temperatures....
Consider the following reaction: CaCO3(s)→CaO(s)+CO2(g). Estimate ΔG for this reaction at each of the following temperatures. (Assume that ΔH∘ and ΔS∘ do not change too much within the given temperature range). Also determine whether the reactions in part 1 and 2 are spontaneous or nonspontaneous. 1).1095 K 2).1500K
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A: Using data in Appendix C in the textbook, calculate...
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A: Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 440 ∘C. Express your answer using two significant figures. Part B: Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 250 ∘C. Express your answer using two significant figures.
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A Using data in Appendix C in the textbook, calculate...
Consider the following reaction: PbCO3(s)←−→PbO(s)+CO2(g) Part A Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 440 ∘C. Express your answer using two significant figures. PCO2 =   atm Part B Using data in Appendix C in the textbook, calculate the equilibrium pressure of CO2 in the system at 250 ∘C. Express your answer using two significant figures. PCO2 =   atm
The data below show the concentration of ABversus time for the following reaction: AB(g)→A(g)+B(g) Time (s)...
The data below show the concentration of ABversus time for the following reaction: AB(g)→A(g)+B(g) Time (s) [AB] (M) 0 0.950 50 0.459 100 0.302 150 0.225 200 0.180 250 0.149 300 0.128 350 0.112 400 0.0994 450 0.0894 500 0.0812 Determine the order of the reaction.
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g),...
Calculate the equilibrium constant Keq for the following reaction at 25°C. (S° values in J/mol•K: N2(g), 191.5 ; O2(g), 205.0 ; Cl2(g), 223.0 ; NOCl(g), 261.6) N2(g) + O2(g) + Cl2(g) ↔ 2NOCl(g) ΔH° = 103.4 kJ a. 2.43 x 10−20 b. 8.82 x 10−29 c. 5.91 x 10−17 d. 2.01 x 10−10 e. 6.99 x 10−24
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are...
please answear each question 1)At equilibrium, ________. a)the rates of the forward and reverse reactions are equal b)the value of the equilibrium constant is 1 c)all chemical reactions have ceased d)the rate constants of the forward and reverse reactions are equal e)the limiting reagent has been consumed 2)The equilibrium-constant expression depends on the ________ of the reaction. a) stoichiometry b) mechanism c) the quantities of reactants and products initially present d) temperature e) stoichiometry and mechanism 3)Given the following reaction...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT