Question

A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes...

A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n=2 to an orbital in which n=7. Express the wavelength in nanometers to three significant figures.

B. An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed. Express your answer as an integer.

Can you explain it in details? Where each number comes from

Homework Answers

Answer #1

A)

Here photon will be captured and it will excite the atom

1/lambda = -R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7

1/lambda = - R* (1/nf^2 - 1/ni^2)

1/lambda = - 1.097*10^7* (1/7^2 - 1/2^2)

lambda = 4.00*10^-7 m

lambda = 400 nm

Answer: 400. nm

B)

wavelength = 93.8 nm

wavelength = 9.38*10^-8 m

Here photon will be emitted

1/lambda = R* (1/nf^2 - 1/ni^2)

R is Rydberg constant. R = 1.097*10^7

1/lambda = R* (1/nf^2 - 1/ni^2)

1/9.38*10^-8 = 1.097*10^7*(1/nf^2 - 1/6^2)

(1/nf^2 - 1/6^2) = 0.9718

1/nf^2 = 0.9996

nf^2 = 1

nf = 1

Answer: 1

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 2 to an orbital in which n = 5. Determine the wavelength of light emitted when an electron in a hydrogen atom makes a transition from an orbital in n = 6 to an orbital in n = 5.
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a...
Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n = 3 to an orbital in which n =6. Answer in nm please. Thank you.
An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level,...
An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed.
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen...
Determine the frequency (Hz) and wavelength (nm) of light emitted when an electron in a Hydrogen atom makes a transition from an orbital in n=6 to an orbital in n=5
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron...
What is the wavelength of light (in m) emitted by a hydrogen atom when an electron relaxes from the 5 energy level to the 3 energy level?
An electron in a hydrogen atom makes a transition from the n = 7 to the...
An electron in a hydrogen atom makes a transition from the n = 7 to the n = 2 energy state. Determine the wavelength of the emitted photon (in nm). Enter an integer.
Calculate the wavelength, in nanometers, of the spectral line produced when an electron in a hydrogen...
Calculate the wavelength, in nanometers, of the spectral line produced when an electron in a hydrogen atom undergoes the transition from the energy level n = 7 to the level n = 1.
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited...
1. a. A photon is absorbed by a hydrogen atom causing an electron to become excited (nf = 6) from the ground state electron configuration. What is the energy change of the electron associated with this transition? b. After some time in the excited state, the electron falls from the n = 6 state back to its ground state. What is the change in energy of the electron associated with this transition? c. When the electron returns from its excited...
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm...
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm photon. a. Is this light visible? In what region of the electromagnetic spectrum does it lie? b. What was the initial principal quantum number, ni, of the electron undergoing the transition?
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom...
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom from the n=1 level to the n=2 level? Explain
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT