Question

PART A) A sample of metal at a known hot temperature is placed in to a...

PART A) A sample of metal at a known hot temperature is placed in to a calorimeter containing water of known mass and known initial temperature. The temperature of the water rises and the final temperature of the water is recorded. What equation is used to calculate the amount of heat the calorimeter water absorbed?

PART B) How do you deermine the amount of heat lost by the metal if you know the amount of heat gained by the calorimeter water?

Part C) What equation is used to calculate the specific heat of the metal if you now know the amount of heat lost by the metal?

* PLEASE EXPLAIN IN DETAIL

Homework Answers

Answer #1

(A) the equation used for this purpose is Q = mcdt

Where

m = mass of water in the calorimeter

c = specific heat capacity of water

dt = change in temperature = final - initial

(B) The amount of heat lost by the metal = heat gained by the water in the calorimeter

m'c'dt' = mcdt

Where

m = mass of water in the calorimeter

c = specific heat capacity of water

dt = change in temperature = final - initial

m' = mass of metal

c' = specific heat capacity of metal

dt' = change in temperature of metal = initial - final

(C) The heat lost by the meatl , Q = m'c'dt'

From this we calculate the specific heat of the metal , c' = Q / (m'dt')   

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC....
A metal sample weighing 72.1 g is placed in a hot water bath at 95.0 oC. The calorimeter contains 42.3 g of deoinized water. The initial temperature of the water is 22.3 oC. The metal is transferred to the calorimeter and the final temperature reached by the water + metal is 32.2 oC. A. Calculate ∆T for the water (Tfinal – Tinitial). B. Calculate ∆T for the metal. C. The specific heat of water is 4.18 J/goC. Calculate the specific...
Data Balance temperature: 27ºC Initial water temperature: 23ºC Initial temperature of the metal part: 68ºC Mass...
Data Balance temperature: 27ºC Initial water temperature: 23ºC Initial temperature of the metal part: 68ºC Mass of the metal part: 193 grams Mass of the empty calorimeter: 110 grams Mass of the water inside the calorimeter: 250 grams Specific heat of water: 4.19 J / gºC Specific heat of the calorimeter (aluminum): 0.90 J / gºC Experiment calculations 1- Calculate the heat gained by the water 2- Calculate the heat gained by the calorimeter 3- Calculate the specific heat of...
3. A sample of metal weighing 35.5g at a temperature of 100 oC was placed in...
3. A sample of metal weighing 35.5g at a temperature of 100 oC was placed in a calorimeter containing 50 g of water at 25.0 oC. At equilibrium the temperature of water and metal was 35.5 oC. Calculate the heat capacity of the metal. . Use this value for Cp:27.65. 4. When 0.50 g of magnesium metal is placed in a calorimeter, and 100. mL of 1.0 M HCl were added the temperature of solution increased from 22.2 oC to...
a. An ice cold piece of aluminum metal is added to 50.0 g of hot water....
a. An ice cold piece of aluminum metal is added to 50.0 g of hot water. Given the average initial temperature (76 C) calculated above for the hot water, calculate the heat, q, in joules of the piece of aluminum metal if the final temperature of the water is 40.0 °C. The specific heat of water is 4.184 J/g-°C. (0.50) b. Calculate the grams of aluminum metal used if the specific heat of aluminum is 0.895 J/g-°C. (0.50)
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water...
Calculate the specific heat of a metal from the following experimental data. 75.0 ml cold water is taken in a calorimeter. The initial temp of the water in the calorimeter is 21.2 degrees C. To the calorimeter containing cold water 29.458 g metal at 98.9 degrees C is added. The final temperature of the contents of the calorimeter is measured to be 29.5 degreesC. (Given: density of water= 1.00 g/ml, specific heat of water= 4.184 J. G. -1 degrees C...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of...
A coffee-cup calorimeter contains 130.0 g of water at 25.3 ∘C . A 124.0-g block of copper metal is heated to 100.4 ∘C by putting it in a beaker of boiling water. The specific heat of Cu(s) is 0.385 J/g⋅K . The Cu is added to the calorimeter, and after a time the contents of the cup reach a constant temperature of 30.3 ∘C . Part A Determine the amount of heat, in J , lost by the copper block....
A student places a 72.0 gram sample of metal at an initial temperature of 100.˚C in...
A student places a 72.0 gram sample of metal at an initial temperature of 100.˚C in a coffee cup calorimeter that contains 40.0 grams of water at an initial temperature of 25.0 ˚C. After addition of the metal, the temperature of the water / metal mixture was monitored using a temperature probe. The highest temperature of the water / solid combination was found to be 35.0 ˚C. (The specific heat of water = 4.18 J / g ˚C ) Do...
A 47.5 block of an unknown metal is heated in a hot water bath to 100...
A 47.5 block of an unknown metal is heated in a hot water bath to 100 degrees Celsius. When the block is placed in an insulated vessel containing 130.0 g of water at 25.0 degrees Celsius, the final temperature is 28.0 degrees Celsius. Determine the specific heat of the unknown metal. The Cs for water is 4.18 J/g degrees Celsius.
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following...
In a calorimetry experiment to determine the specific heat capacity of a metal block, the following data was recorded: Quantity Mass of the metal block 0.50 kg Mass of empty calorimeter + Stirrer 0.06 kg Mass of calorimeter + stirrer + water 0.20 kg Mass of water 0.14 kg Initial Temperature of metal block 55.5 ⁰C Initial Temperature of water and calorimeter 22 ⁰C Final Temperature of block- water system 27.4 ⁰C Take the specific heat capacity of water to...
In the laboratory, you are given a 18.5 g sample of an unknown metal. The sample...
In the laboratory, you are given a 18.5 g sample of an unknown metal. The sample is irregular in shape, conducts heat and electricity well, and sinks in water. The sample is placed into a partially filled graduated cylinder and displaces 2.06 mL of water. The sample is then heated to 160℃ with a Bunsen burner. The hot metal is placed into a calorimeter filled with exactly 50.0 g of water. The water temperature rises from 20℃ to 24.6℃ ....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT