Question

A mixture of 5.00×10^-3 mole of H2 and 5.00×10^-3 mole of I2 are placed in a...

A mixture of 5.00×10^-3 mole of H2 and 5.00×10^-3 mole of I2 are placed in a 5.0L container at 350° C and allowed to come to equilibrium. At equilibrium the concentration of HI is 5.00×10^-4 M.

a) What is the Kc at 350°C for the reaction H2 (g) + I2(g) --> 2HI (g)?

b) What is the equilibrium of H2 (g)?

At 25°C Kc = 4.5 for the reaction
SO3(g) + NO(g) --> NO2(g)+ SO2(g)
If 0.50 mole of SO3 and 0.50 mole of NO are placed in a 5.0L container and are allowed to react.

a) what will be the equilibrium concentration of SO2(g)?

b) what will be the equilibrium concentration of SO3(g)?

c) what is the Kp at 25° C?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mixture containing an initial concentration of 0.1614 M for H2 and 0.1440 M for I2...
A mixture containing an initial concentration of 0.1614 M for H2 and 0.1440 M for I2 is allowed to come to equilibrium (see reaction below). What must be the equilibrium concentration of HI? H2(g) + I2(g) ↔ 2HI(g) Kc = 48.7000
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <----> 2HI(g) Kc=53.3 At this temperature, 0.400 mol of H2 and 0.400 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
a reaction mixture of 0.00623 M H2, 0.00414 M I2 and 0.0224 M HI is placed...
a reaction mixture of 0.00623 M H2, 0.00414 M I2 and 0.0224 M HI is placed in a steel container of 1.0 L. The reaction that takes place is: H2 (g) + I2 (g) ⇌ 2 HI (g). Kc= 54.3 at 430 °C a) Calculate the reaction quotient, Qc, for the initial mixture. b) Will the reaction proceed toward making HI? c) Calculate the concentration of these species at equilibrium.
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g)...
At a certain temperature, the equilibrium constant, Kc for this reaction is 53.3. H2(g)+I2(g) = 2HI(g) At this temperature, 0.300 mol of H2 and 0.300 mol of I2 were placed in a 1.00 L container to react. What concentration of HI is present at equilibrium? View comments (1)
A sample of HI (9.30 x 10-3 mol) was placed in an empty 2.00 L container...
A sample of HI (9.30 x 10-3 mol) was placed in an empty 2.00 L container at 1000 K. After equilibrium was reached, the concentration of I2 was 6.29 x 10- 4 M. Calculate the value of Kc at 1000 K for the reaction H2(g) + I2(g) 2HI(g).
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 53.3. H2(g) + I2(g) <-------> 2 HI(g) Kc=53.3 At this temperature, 0.600 mol of H2 and 0.600 mol of I2 were placed in a 1.00-L container to react. What concentration of HI is present at equilibrium?
A student ran the following reaction in the laboratory at 742 K: H2(g) + I2(g) <<------->>>2HI(g)...
A student ran the following reaction in the laboratory at 742 K: H2(g) + I2(g) <<------->>>2HI(g) When she introduced 0.202 moles of H2(g) and 0.225 moles of I2(g) into a 1.00 liter container, she found the equilibrium concentration of HI(g) to be 0.331 M. Calculate the equilibrium constant, Kc, she obtained for this reaction. Kc =
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g)...
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g) <--> 2HI(g) The value of Kp for the reaction is 69.0 at 730.0C. What is the equilibrium partial pressure of HI in a sealed reaction vessel at 730.0C if the initial partial pressures of H2 and I2 are both 0.1600 atm and initially there is no HI present?
For the reaction   2HI(g) ⇌H2(g)+I2(g), Kc= 0.290   at 400 K. If the initial concentration of  HI ...
For the reaction   2HI(g) ⇌H2(g)+I2(g), Kc= 0.290   at 400 K. If the initial concentration of  HI  is  4.0×10−3M and the initial concentrations of  H2, and the initial concentrations of  H2, and I2 are both  1.50×10–3M  at  400 K, which one of the following statements is correct? a. The concentrations of HI and I2 will increase as the system is approaching equilibrium. b. The concentrations of H2 and I2 will increase as the system is approaching equilibrium. c. The system is...
A 1.00 L container holds 0.015 mol of H2 (g) , 0.015 mol of I2 (g),...
A 1.00 L container holds 0.015 mol of H2 (g) , 0.015 mol of I2 (g), and 0.015 mol of HI (g) at 721 K. What are the concentrations(pressures) of H2 (g), I2 (g), and HI (g) after the system achieved a state of equilibrium? The value of Kc is 50.0 for reaction: H2 (g) + I2 (g)  2HI (g)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT