Question

A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and...

A 0.727 g sample of D-ribose (C5H10O5) was placed in a bomb calorimeter (constant volume) and ignited in the presence of excess oxygen. The temperature was observed to rise by 0.910 K. In a separate experiment, 0.825 g of benzoic acid (C6H5CO2H) is similarly ignited in the same calorimeter, and is observed to cause an increase of the temperature of 1.940 K. The internal energy of combustion of benzoic acid is -3251 kJ mol-1. (a) Calculate the heat capacity of the calorimeter. (b) Calculate the internal energy of combustion of D-ribose. (c) Calculate the enthalpy of formation for D-ribose.

Homework Answers

Answer #1

a) heat released during the combustion of benzoicacid (q) = n*DU

= (0.825/122.12)*-3251

   = -21.963 Kj

heat released during the combustion of benzoicacid (q) = C*DT

   c = heat capacity of calorimeter = ?

   DT = 1.94 k

21.963*10^3 = c*1.94

C = 11.321 kj/C

b) No of mol of D-ribose combusted = 0.727/150.13 = 0.00484 mol

   heat released(q) = c*DT

                    = 11.321*0.91

                    = 10.3 kj

   internal energy of combustion of D-ribose = q/n = -10.3/0.00484 = -2128.1 kj/mol

c)

2C5H10O5(s) + 10O2(g) ---> 10CO2(g) + 10H2O(l)

Dn = 10-10 = 0

so that, DU = DH

DH0combustion of D-ribose = -2128.1 kj/mol


Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic...
In order to calibrate a constant volume bomb calorimeter, the combustion of (7.450x10^-1) g of benzoic acid, C6H5COOH, was observed to cause the temperature in the calorimeter to rise from 25.000 to (2.87000x10^1) oC. The energy of combustion of benzoic acid, ΔU, is -3226.7 kJ mol-1. What is total heat capacity (C) of the calorimeter (including all its contents) in kJ oC-1?
The combustion of 0.1567 g benzoic acid increases the temperature of a bomb calorimeter by 2.57°C....
The combustion of 0.1567 g benzoic acid increases the temperature of a bomb calorimeter by 2.57°C. Calculate the heat capacity of this calorimeter. (The energy released by combustion of benzoic acid is 26.42 kJ/g.)A 0.2156-g sample of vanillin (C8H8O3) is then burned in the same calorimeter, and the temperature increases by 3.28°C. What is the energy of combustion per gram of vanillin? Per mole?
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in...
1. 0.1964 g sample of the solid quinone (C6H4O2) is combusted in a bomb calorimeter in the presence of excess oxygen. The total heat capacity of the calorimeter including water is 1.560 kJ/°C. The temperature of the calorimeter increases initially from 22.000˚C to 25.200˚C. Write the balanced combustion reaction: (diff=3) a. Calculate the enthalpy of combustion of quinone in kJ/mol. b. Determine the enthalpy of formation of quinone (in kJ/mol). Use Appendix C from your textbook as needed. Hint: Write...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 1.4170 g sample of L-ascorbic acid (C6H8O6) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.354×103 g of water. During the combustion the temperature increases from 24.92 to 27.68 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine...
1. A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.4137 g sample of bianthracene (C28H18) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.361×103 g of water. During the combustion the temperature increases from 24.82 to 27.25 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature...
A. When a 0.235-g sample of benzoic acid is combusted in a bomb calorimeter, the temperature rises 1.644 ∘C . When a 0.275-g sample of caffeine, C8H10O2N4, is burned, the temperature rises 1.585 ∘C . Using the value 26.38 kJ/g for the heat of combustion of benzoic acid, calculate the heat of combustion per mole of caffeine at constant volume. Please show how to do this problem.
The combustion of 1.961 g of sucrose, C12H22O11(s), in a bomb calorimeter with a heat capacity...
The combustion of 1.961 g of sucrose, C12H22O11(s), in a bomb calorimeter with a heat capacity of 4.00 kJ/°C results in an increase in the temperature of the calorimeter and its contents from 22.92 °C to 31.00 °C. Calculate the enthalpy of combustion, Δ?c, for sucrose in kilojoules per mole. Δ?c= kJ/mol What is the internal energy change, Δ?, for the combustion of 1.961 g of sucrose in the bomb calorimeter? Δ?= kJ
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.3833 g sample of phenanthrene (C14H10) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.284×103 g of water. During the combustion the temperature increases from 22.04 to 24.54 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the...
A bomb calorimeter, or a constant volume calorimeter, is a device often used to determine the heat of combustion of fuels and the energy content of foods. In an experiment, a 0.5265 g sample of bisphenol A (C15H16O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.377×103 g of water. During the combustion the temperature increases from 21.79 to 24.65 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter...
Benzoic acid, C6H5COOH, is a common standard used in bomb calorimeters, which maintain a constant volume....
Benzoic acid, C6H5COOH, is a common standard used in bomb calorimeters, which maintain a constant volume. If 1.20 g of benzoic acid gives off 31,723 J of energy when burned in the presence of excess oxygen and in a water bath having a temperature of 24.6°C, calculate q, w, DH, and DU for the reaction.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT