Question

Consider the reaction below: CO (g) + 2H2 (g) --> CH3OH (l) ΔHo= -128.1 kJ ΔHfo...

Consider the reaction below:

CO (g) + 2H2 (g) --> CH3OH (l) ΔHo= -128.1 kJ

ΔHfo

kJ (mol-1​)

ΔGfo

kJ (mol-1​)

So

kJ (mol-1​)

CO (g) -110.5 -137.3 +197.9
CH3OH (l) -238.6 -166.2 +126.8

The data in the table above were determined at 25oC

a) Calculate ΔGo for the reaction above at 25oC

b) Calculate the Keq for teh reaction above at 25oC

c) Calculate ΔSo for the reaction above at 25oC

PLEASE SHOW YOUR WORK! I WANT TO UNDERSTAND HOW THIS PROBLEM CAN BE WORKED OUT.

Homework Answers

Answer #1

a)

dG = Gproducts - dGreactatns

dG = CH3OH - (OC + H2)

substitute values

dG = -166.2 - (-137.3 + 0)

dG = -28.9 kJ

b)

Keq can be related via

dG = -RT*ln(Keq)

solve for Keq

Keq = exp(-dG/(RT))

substitute known data

substitue dG in J/mol, i.e. 10^3 J

Keq = exp(28900/(8.314*298))

Keq = 116,383.479

Keq = 1.16*10^5

c)

for dS:

we can't use dS 0 S prod - -S React since we do not have data for H2 entropy

so

apply

dG = dH - T*dS

dS = (dG - dH)/(-T)

dS = (-28.9*10^3 + 128.1*10^3)/(-298)

dS = -332.88 J/molK

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 27.2 g CO and 2.32 g H2. At equilibrium, the flask contains 8.66 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.25 −L flask at a certain temperature contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.64 g CH3OH Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.15 −L flask at a certain temperature initially contains 26.8 g CO and 2.35 g H2. At equilibrium, the flask contains 8.67 g CH3OH. Calculate the equilibrium constant (Kc) for the reaction at this temperature
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.18 −L flask at a certain...
Consider the following reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.18 −L flask at a certain temperature initially contains 27.2 g CO and 2.32 g H2. At equilibrium, the flask contains 8.64 g CH3OH. Part A Calculate the equilibrium constant (Kc) for the reaction at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.21 −L flask at 500 K contains 9.04 g CO and 0.58 g of H2. At equilibrium, the flask contains 2.34 g CH3OH. Calculate the equilibrium constant at this temperature.
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02...
Consider the reaction: CO(g)+2H2(g)⇌CH3OH(g) A reaction mixture in a 5.19-L flask at 500 K contains 9.02 g of CO and 0.57 g of H2. At equilibrium, the flask contains 2.35 g of CH3OH. Calculate the equilibrium constant at this temperature.
Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)←−→CH3OH(g). An...
Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)←−→CH3OH(g). An equilibrium mixture in a 1.50 −L vessel is found to contain 7.17×10−2 mol CH3OH, 0.170 mol CO, and 0.301 mol H2 at 500 K. Calculate Kc at this temperature.
Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)←−→CH3OH(g). An...
Methanol (CH3OH) is produced commercially by the catalyzed reaction of carbon monoxide and hydrogen: CO(g)+2H2(g)←−→CH3OH(g). An equilibrium mixture in a 1.50 −L vessel is found to contain 7.17×10−2 mol CH3OH, 0.170 mol CO, and 0.301 mol H2 at 500 K. Part A Calculate Kc at this temperature.
Consider the reaction: CO(g) + 2H2(g)=CH3OH(g) . An equilibrium mixture contained in a 1.0 L closed...
Consider the reaction: CO(g) + 2H2(g)=CH3OH(g) . An equilibrium mixture contained in a 1.0 L closed vessel was found to contain 0.105 moles of CO, 0.114 moles of H2, and 0.185 moles of CH3OH. A second equilibrium mixture in a second 500 mL vessel was found to contain 0.211 moles of CO and 0.0122 moles of CH3OH. How many moles of H2 were in the second equilibrium mixture?  
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l)...
Hess's Law Given the following data: 2C(s) + 2H2(g) + O2(g) → CH3OCHO(l) ΔH°=-366.0 kJ CH3OH(l) + O2(g) → HCOOH(l) + H2O(l) ΔH°=-473.0 kJ C(s) + 2H2(g) + 1/2O2(g) → CH3OH(l) ΔH°=-238.0 kJ H2(g) + 1/2O2(g) → H2O(l) ΔH°=-286.0 kJ calculate ΔH° for the reaction: HCOOH(l) + CH3OH(l) → CH3OCHO(l) + H2O(l)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT