Question

The temperature of a 0.555 kg block of ice is lowered to -120°C. Heat (0.5159 MJ)...

The temperature of a 0.555 kg block of ice is lowered to -120°C. Heat (0.5159 MJ) is then transferred to the block of ice (assume ice is otherwise thermally isolated). What is the final temperature of the water in °C?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 1 : The temperature of a 0.555 kg block of ice is lowered to -120°C....
Question 1 : The temperature of a 0.555 kg block of ice is lowered to -120°C. Heat (0.5159 MJ) is then transferred to the block of ice (assume ice is otherwise thermally isolated). What is the final temperature of the water in °C? Question 2 : Calculate the time needed (seconds) to that up 285 mL of tomato soup from 4.0°C to 57°C in a 1100. watt microwave oven. Assume that the density of tomato soup is 1.25 g/mL and...
A 10.84 kg block of ice has a temperature of -22.5o C. The pressure is one...
A 10.84 kg block of ice has a temperature of -22.5o C. The pressure is one atmosphere. The block absorbs 5.113×106 J of heat. What is the final temperature of the liquid water? (Give your answer in oC, but enter only the numerical portion--oC is implied) Tries 0/10
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The...
1. A 36.6-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 9.02 m/s and the final speed is 3.89 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C. 2. A rock of mass 0.396 kg...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam...
A 2.5 kg metallic block with an initial temperature of 80°C is placed in a styrofoam cup containing 0.1 kg of ice at -15°C. Assuming that no heat escapes from the cup what is the final temperature of the metallic block? The specific heat of the metal is 480 J/kg ∙ K, specific heat of ice is 2090 J/kg ∙ K, the latent heat of fusion of water is 3.33 × 105 J/kg, and the specific heat of water is...
Suppose that 0.1 kg of ice at an initial temperature of -10°C are put into 0.40...
Suppose that 0.1 kg of ice at an initial temperature of -10°C are put into 0.40 kg of water at an initial temperature of 20°C. Assume the final temperature is 0°C. How many grams of ice will melt? Specific heat capacity of water is 4,200 J/kg/°C. Specific heat of fusion of water is 336,000 J/kg and specific heat capacity of ice is 2,100 J/kg/°C.
A 60 kg block of ice begins at -60 degrees the specific heat of ice is...
A 60 kg block of ice begins at -60 degrees the specific heat of ice is 2090 j/(kg)C. The latent heat of fusion of water is 3.3 x 10^5 and the latent heat of vaporization is 2.3 x 10^6 J/kg. How much energy is required to heat the ice to 0 degrees Celcius (melting point)? How much energy is required to heat the ice from -50C to the melting point and melt the ice? How much energy is required to...
If you pour 0.600 kg of 20.0ºC water onto a 1.20-kg block of ice (which is...
If you pour 0.600 kg of 20.0ºC water onto a 1.20-kg block of ice (which is initially at 0 ºC), what is the final temperature? You may assume that the water cools so rapidly that effects of the surroundings are negligible. The specific heat of water is 4 186 J/(kg * ºC), the specific heat of ice is 2 090 J/(kg * ºC), and the heat of fusion of water is 334 x103 J/kg.
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 41.9-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.83 m/s and the final speed is 3.69 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial...
A 48.5-kg block of ice at 0 °C is sliding on a horizontal surface. The initial speed of the ice is 8.24 m/s and the final speed is 4.08 m/s. Assume that the part of the block that melts has a very small mass and that all the heat generated by kinetic friction goes into the block of ice, and determine the mass of ice that melts into water at 0 °C.
2.50 kg of water at 90 (degrees of C) is contained in a thermally-isolated container. A...
2.50 kg of water at 90 (degrees of C) is contained in a thermally-isolated container. A 1.50 kg chunk of ice at - 10 degrees C is added to the water, in the same thermally isolated container. a.) Describe the final state of the system when it has reached thermal equilibrium, give the final temperature and the amount of ice let (if any). b.) Find the net change in entropy of the system during this process.