Question

1) For iodine gas [ I2(g) ], deltaHf = 62.4 kJ/mol and S = 260.7 J/mol-K....

1) For iodine gas [ I2(g) ], deltaHf = 62.4 kJ/mol and S = 260.7 J/mol-K. Calculate the equilibrium partial pressures of I2(g), H2(g), and HI(g) for the system 2HI(g) ⇌ H2(g) + I2(g) at 500ºC if the initial partial pressures are all 0.200 atm.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) For iodine gas [ I2(g) ], delta H= 62.4 kJ/mol and S = 260.7 J/mol-K....
1) For iodine gas [ I2(g) ], delta H= 62.4 kJ/mol and S = 260.7 J/mol-K. Calculate the equilibrium partial pressures of I2(g), H2(g), and HI(g) for the system 2HI(g) ⇌ H2(g) + I2(g) at 500oC if the initial partial pressures are all 0.200 atm.
The system H2(g) + I2(g) ⇌ 2HI(g ) is at equilibrium at a fixed temperature with...
The system H2(g) + I2(g) ⇌ 2HI(g ) is at equilibrium at a fixed temperature with a partial pressure of H2 of 0.200 atm, a partial pressure of I2 of 0.200 atm, and a partial pressure of HI of 0.100 atm. An additional 0.26 atm pressure of HI is admitted to the container, and it is allowed to come to equilibrium again. What is the new partial pressure of HI? A.0.360 atm B. 0.464 atm C. 0.152 atm D. 0.104...
A 1.00 L container holds 0.015 mol of H2 (g) , 0.015 mol of I2 (g),...
A 1.00 L container holds 0.015 mol of H2 (g) , 0.015 mol of I2 (g), and 0.015 mol of HI (g) at 721 K. What are the concentrations(pressures) of H2 (g), I2 (g), and HI (g) after the system achieved a state of equilibrium? The value of Kc is 50.0 for reaction: H2 (g) + I2 (g)  2HI (g)
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g)...
The equation for the formation of hydrogen iodide from H2 and I2 is: H2(g) + I2(g) <--> 2HI(g) The value of Kp for the reaction is 69.0 at 730.0C. What is the equilibrium partial pressure of HI in a sealed reaction vessel at 730.0C if the initial partial pressures of H2 and I2 are both 0.1600 atm and initially there is no HI present?
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the...
An equilibrium mixture for the following reaction: H2(g) + I2(g) <---> 2HI(g) is composed of the following: P(I2) = 0.08592 atm; P(H2) = 0.08592 atm; P(HI) = 0.5996 atm. If this equilibrium is disturbed by adding more HI so that the partial pressure of HI is suddenly increased to 1.0000 atm, what will the partial pressures of each of the gases be when the system returns to equilibrium?   
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430°C. Calculate the equilibrium concentrations of H2, I2, and HI at 430°C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.483 M.
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌...
Kc for the reaction of hydrogen and iodine to produce hydrogen iodide. H2(g) + I2(g) ⇌ 2HI(g) is 54.3 at 430 ° C. Calculate the equilibrium concentrations of H2, I2, and HI at 430 ° C if the initial concentrations are [H2] = [I2] = 0 M, and [HI] = 0.445 M.
At 400 K, an equilibrium mixture of H2, I2, and HI consists of 0.082 mol H2,...
At 400 K, an equilibrium mixture of H2, I2, and HI consists of 0.082 mol H2, 0.084 mol I2, and 0.15 mol HI in a 2.50-L flask. What is the value of Kp for the following equilibrium? (R = 0.0821 L · atm/(K · mol)) 2HI(g) H2(g) + I2(g) A. 0.045 B. 7.0 C. 22 D. 0.29 E. 3.4
For the reaction   2HI(g) ⇌H2(g)+I2(g), Kc= 0.290   at 400 K. If the initial concentration of  HI ...
For the reaction   2HI(g) ⇌H2(g)+I2(g), Kc= 0.290   at 400 K. If the initial concentration of  HI  is  4.0×10−3M and the initial concentrations of  H2, and the initial concentrations of  H2, and I2 are both  1.50×10–3M  at  400 K, which one of the following statements is correct? a. The concentrations of HI and I2 will increase as the system is approaching equilibrium. b. The concentrations of H2 and I2 will increase as the system is approaching equilibrium. c. The system is...
Consider the reaction between iodine gas and chlorine gas to form iodine monochloride: I2(g)+Cl2(g)⇌2ICl(g)Kp=81.9 (at 298...
Consider the reaction between iodine gas and chlorine gas to form iodine monochloride: I2(g)+Cl2(g)⇌2ICl(g)Kp=81.9 (at 298 K) A reaction mixture at 298 K initially contains PI2=0.35 atm and PCl2=0.35 atm . What is the partial pressure of iodine monochloride when the reaction reaches equilibrium?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT