Question

Atomic hydrogen produces a well-known series of spectral lines in several regions of the electromagnetic spectrum....

Atomic hydrogen produces a well-known series of spectral lines in several regions of the electromagnetic spectrum. Each series fits the Rydberg equation with its own particular n1 value. Calculate the value of n1 that would produce a series of lines in which the highest energy line has a wavelength of 365 nm.

Homework Answers

Answer #1

365nm = 365*10^-7cm

RH   = 109678cm^-1

n2 = infinate

1/   = RH(n1^2-1/n2^2)

1/365*10^-7   = 109678(1/n1^2 -1/^2)

1/365*10^-7   = 109678(1/n1^2 -0)

1/n1^2          = 1/365*10^-7 *109678

1/n1^2         = 0.25

n1^2        = 1/0.25

n1^2       = 4

n1          = 2 (Balmer series) visible region >>>>answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Hydrogen exhibits several series of line spectra in different spectral regions. For example the Lyman series...
Hydrogen exhibits several series of line spectra in different spectral regions. For example the Lyman series (nf = 1 in Balmer-Rydberg equation) occurs in the ultraviolet region while the Balmer (nf = 2) series occurs in the visible range and the Paschen (nf = 3), Brackett (nf = 4) and Pfund ( nf = 5) series all occur in the infrared range. What is the shortest-wavelength (in nm) in the Brackett series?
(b). Determine the (i) longest and (ii) shortest wavelength lines (in nanometers) in the Paschen series...
(b). Determine the (i) longest and (ii) shortest wavelength lines (in nanometers) in the Paschen series of the hydrogen spectrum. In which region of the spectrum is the shortest- wavelength line? (c) Using the Balmer-Rydberg equation, calculate the value of n corresponding to the violet emission line (wavelength = 434.0 nm) in the Balmer series of the hydrogen emission spectrum.
One series of lines in the hydrogen spectrum is caused by emission of energy accompanying the...
One series of lines in the hydrogen spectrum is caused by emission of energy accompanying the fall of an electron from outer shells to the fourth shell. The lines can be calculated using the Balmer-Rydberg equation: 1λ=R∞[1m2−1n2] where m=4, R∞ = 1.097×10−2nm−1, and nis an integer greater than 4. Part A Calculate the wavelengths in nanometers of the first two lines in the series. Express your answers using four significant figures separated by a comma. Part B Calculate the energies...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT