Question

A 12.30-g block of solid gold at 63.62 °C is immersed in a 23.29-g pool of...

A 12.30-g block of solid gold at 63.62 °C is immersed in a 23.29-g pool of liquid ethanol with a temperature of 12.25 °C. When thermal equilibrium is reached, what is the temperature of the gold and ethanol?

Specific heat capacities: gold = 0.129 J/g °C; ethanol = 2.44 J/g °C

________°C

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10.54-g block of solid tin at 14.65 °C is immersed in a 21.35-g pool of...
A 10.54-g block of solid tin at 14.65 °C is immersed in a 21.35-g pool of liquid ethylene glycol with a temperature of 61.51 °C. When thermal equilibrium is reached, what is the temperature of the tin and ethylene glycol? Specific heat capacities: tin = 0.213 J/g °C; ethylene glycol = 2.36 J/g °C
A 25 g gold nugget with an initial temperature of 60 °C is dropped into an...
A 25 g gold nugget with an initial temperature of 60 °C is dropped into an insulated cup containing 100 ml of water initially at a temperature of 5°C. What is the final temperature after thermal equilibrium is established? Table 3.4 Specific Heat Capacities of Some Common Substances Substance Specific Heat Capacity (J/g °C) Lead 0.128 Gold 0.128 Silver 0.235 Copper 0.385 Iron 0.449 Aluminum 0.903 Ethanol 2.42 Water 4.184
A piece of solid antimony weighing 34.3 g at a temperature of 618 °C is placed...
A piece of solid antimony weighing 34.3 g at a temperature of 618 °C is placed in 343 g of liquid antimony at a temperature of 754 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid antimony is ΔHfus = 19.6 kJ/mol at its melting point of 631 °C, and the molar heat capacities for...
A piece of solid lead weighing 45.3 g at a temperature of 308 °C is placed...
A piece of solid lead weighing 45.3 g at a temperature of 308 °C is placed in 453 g of liquid lead at a temperature of 374 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid lead is ΔHfus = 4.77 kJ/mol at its melting point of 328 °C, and the molar heat capacities for...
A piece of solid lead weighing 43.2 g at a temperature of 314 °C is placed...
A piece of solid lead weighing 43.2 g at a temperature of 314 °C is placed in 432 g of liquid lead at a temperature of 367 °C. After a while, the solid melts and a completely liquid sample remains. Calculate the temperature after thermal equilibrium is reached, assuming no heat loss to the surroundings. The enthalpy of fusion of solid lead is ΔHfus = 4.77 kJ/mol at its melting point of 328 °C, and the molar heat capacities for...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of...
A 60.0 g aluminum block, initially at 55.00 °C, is submerged into an unknown mass of water at 293.15 K in an insulated container. The final temperature of the mixture upon reaching thermal equilibrium is 25.00 °C. What is the approximate mass of the water? The specific heat of water is 4.18 J/g . °C. The specific heat of aluminum is 0.897 J/g . °C.
27.1 g of solid ethanol (MW = 46.07 g/mol) at -135.0 C (COLD!) is warmed up...
27.1 g of solid ethanol (MW = 46.07 g/mol) at -135.0 C (COLD!) is warmed up to room temperature (23.0 C). Here are some relevant physical data: Phase Cs (J/gC) Phase change temperature and enthalpy Gas 1.70 J/gC boiling pt: 78.4 C; Hvap: 38.6.7 kJ/mol Liquid 2.44 J/gC freezing pt: -114.1 C; Hfus: 4.9 kJ/mol Solid 2.42 J/gC a) What physical state will this sample of ethanol be at 23.0 C? _________________ b) Calculate the total energy (in kJ) required...
A 4 g good block at 250 °C and a 1 g aluminum block at 120...
A 4 g good block at 250 °C and a 1 g aluminum block at 120 °C are placed on a 45 g sheet of copper at 20 °C. If the three objects are well-insulted from their surroundings, what equilibrium temperature do they eventually reach? The heat capacities of good, aluminum are 129, 900 and 385 J/(kgK), respectively.
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 21.1 g of solid ethanol at -114.5 °C to gaseous ethanol at 191.5 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C. ________kJ
How much heat energy is required to convert 81.5 g of solid ethanol at -114.5 °C...
How much heat energy is required to convert 81.5 g of solid ethanol at -114.5 °C to gasesous ethanol at 194.1 °C? The molar heat of fusion of ethanol is 4.60 kJ/mol and its molar heat of vaporization is 38.56 kJ/mol. Ethanol has a normal melting point of -114.5 °C and a normal boiling point of 78.4 °C. The specific heat capacity of liquid ethanol is 2.45 J/g·°C and that of gaseous ethanol is 1.43 J/g·°C.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT