Question

Consider the reaction shown below, where M represents a generic metal. The standard free energy change...

Consider the reaction shown below, where M represents a generic metal. The standard free energy change (ΔG°) for this reaction is –533 kJ. What is the standard reduction potential of M? Is M2+ a stronger or weaker oxidizing agent than Al3+?

2Al(s) +3M2+(aq) → 2Al3+(aq) + 3M(s)

Homework Answers

Answer #1

writing the equations for oxidation half and reduction half:

Oxidation Half: Al(s) ----> Al(+3) + 3e-

Reduction Half: M(+2) + 2e- ---> M

In order to cancel the electron we need to multiply the first reaction by 2 and second reaction by 3, hence number of electrons involved in the reaction are equal to 6

Hence value of n=6

-533*10^(3) = -6*96500 * Ecell

Ecell = 0.92055 V

Since the Delta G value is negative and EMF is positive hence the reaction is spontaneous hence M2+ is a stronger oxidizing agent since it can oxidize Al to Al(+3)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the decomposition of a metal oxide to its elements where M represents a generic metal:...
Consider the decomposition of a metal oxide to its elements where M represents a generic metal: M2O (s) ⇌ 2 M (s) + 1/2 O2 (g) Substance: ----> ∆G°f (kg/mol): M2O(s) ----------->-7.00 M(s) --------------> 0 O2(g) --------------->0 1. What is the standard change in Gibbs energy for the reaction as written in the forward direction? ∆G°rxn = ? kj/mol 2. What is the equilibrium constant for this reaction as written in the forward direction at 298 K? K = ?...
1. Use standard reduction potentials to calculate the standard free energy change in kJ for the...
1. Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 3I2(s) + 2Cr(s) -----> 6I-(aq) + 2Cr3+(aq) Answer: _______ kJ K for this reaction would be greater or less than one. 2. Use standard reduction potentials to calculate the standard free energy change in kJ for the reaction: 2Cu2+(aq) + Sn(s) ----> 2Cu+(aq) + Sn2+(aq) Answer: ______ kJ K for this reaction would be greater or less than one.
1) The free energy change for the following reaction at 25 °C, when [Pb2+] = 1.18...
1) The free energy change for the following reaction at 25 °C, when [Pb2+] = 1.18 M and [Cd2+] = 7.90×10-3 M, is -65.9 kJ: Pb2+(1.18 M) + Cd(s)> Pb(s) + Cd2+(7.90×10-3 M) ΔG = -65.9 kJ What is the cell potential for the reaction as written under these conditions? Answer: ___V Would this reaction be spontaneous in the forward or the reverse direction? 2) Use the standard reduction potentials located in the 'Tables' linked above to calculate the standard...
± Cell Potential and Free Energy Free-energy change, ΔG∘, is related to cell potential, E∘, by...
± Cell Potential and Free Energy Free-energy change, ΔG∘, is related to cell potential, E∘, by the equation ΔG∘=−nFE∘ where n is the number of moles of electrons transferred and F=96,500C/(mol e−) is the Faraday constant. When E∘ is measured in volts, ΔG∘ must be in joules since 1 J=1 C⋅V. Part A Calculate the standard free-energy change at 25 ∘C for the following reaction: Mg(s)+Fe2+(aq)→Mg2+(aq)+Fe(s) Express your answer to three significant figures and include the appropriate units. Part B...
Substance ΔG°f(kJ/mol) M3O4(s) −8.80 M(s) 0 O2(g) Consider the decomposition of a metal oxide to its...
Substance ΔG°f(kJ/mol) M3O4(s) −8.80 M(s) 0 O2(g) Consider the decomposition of a metal oxide to its elements, where M represents a generic metal. M3O4(s)↽−−⇀ 3M(s)+2O2(g) What is the equilibrium constant of this reaction, as written, in the forward direction at 298 K? What is the equilibrium pressure of O2(g) over M(s) at 298 K?
Question are as shown. no additional information was given... 1. Determine the value of the standard...
Question are as shown. no additional information was given... 1. Determine the value of the standard free energy, ΔGo, in kJ/mol at 25oC for the reaction: Na+(aq) + 2Br -(aq)   →   Na(s) + Br2(g) ΔGo = ? 2. Determine the value of the standard free energy, ΔGo, in kJ/mol at 25oC for the reaction: Al3+(aq) + Ca(s)   →   Al(s) + Ca2+(aq) ΔGo = ?
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g)...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g) ΔH1=−864.0 kJ HCl(g)⟶HCl(aq) ΔH2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) ΔH3=−1845.0 kJ MCl3(s)⟶MCl3(aq) ΔH4=−440.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s) ΔH= ? kJ
Determine the free energy(ΔG) from the standard cell potential (Ecell0 ) for the reaction: 2ClO2-(aq)+Cl2(g)→2ClO2(g)+ 2Cl-(aq)...
Determine the free energy(ΔG) from the standard cell potential (Ecell0 ) for the reaction: 2ClO2-(aq)+Cl2(g)→2ClO2(g)+ 2Cl-(aq) where: ClO2+e-→ClO2-Ered0 =+0.954 V. Cl2+2e-→2Cl-Ered0 =+1.36 V. ΔG=+79 kJ ΔG=-790 kJ ΔG=-79 kJ ΔG=-0.79 kJ
Consider the decomposition of a metal oxide to its elements, where M represents a generic metal...
Consider the decomposition of a metal oxide to its elements, where M represents a generic metal Find: -Grxn -K -P(o2) M2O3(s)<----> 2M(s) +3/2O2 (g) M2O3= -6.70 M(s)=0 02=0 Please explain
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0...
Consider these reactions, where M represents a generic metal. 2M(s)+6HCl(aq)⟶2MCl3(aq)+3H2(g)Δ?1=−579.0 kJ HCl(g)⟶HCl(aq) Δ?2=−74.8 kJ H2(g)+Cl2(g)⟶2HCl(g) Δ?3=−1845.0 kJ MCl3(s)⟶MCl3(aq) Δ?4=−138.0 kJ Use the given information to determine the enthalpy of the reaction 2M(s)+3Cl2(g)⟶2MCl3(s)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT