Question

if the decomposition of N2O5 has an activation energy of 103 kJ/mole and a frequency factor...

if the decomposition of N2O5 has an activation energy of 103 kJ/mole and a frequency factor of 4.3 *10^13 s^-1. what is the rate constant for this decomposition at 20°C?100°C?

Homework Answers

Answer #1

Arrhenus equation k = A e-Ea/RT

where k = rate constant

A = frequency factor

Ea = activation energy

R= universal gas constant = 8.314 J/K/mol

T = temperature

Rate constant at 20oC :

k = A e-Ea/RT

Given that T = 20oC = 20 + 273 K = 293 K

A = 4.3x1013 s-1

Ea = 103 kJ/mole = 103000 J/mol

Hence,

k = A e-Ea/RT

   = ( 4.3x1013 s-1)  e-(103000 J/mol/  8.314 J/K/mol x 293 K)

   = 1.86 x 10-5

k = 1.86 x 10-5

Therefore,

rate constant at 20oC = 1.86 x 10-5

Rate constant at 100oC :

k = A e-Ea/RT

Given that T = 100oC = 100 + 273 K = 373 K

A = 4.3 x 1013 s-1

Ea = 103 kJ/mole = 103000 J/mol

Hence,

k = A e-Ea/RT

   = ( 4.3 x 1013 s-1)  e-(103000 J/mol/  8.314 J/K/mol x 373 K)

   = 0.16

k = 0.16

Therefore,

rate constant at 100oC = 0.16

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103...
ARRHENIUS EQUATION CALCULATIONS The activation energy for the gas phase decomposition of dinitrogen pentoxide is 103 kJ. N2O52 NO2 + 1/2 O2 The rate constant at 319 K is 5.59×10-4 /s. The rate constant will be 6.37×10-3 /s at ______ K. PART 2 The activation energy for the gas phase isomerization of isopropenyl allyl ether is 123 kJ. CH2=C(CH3)-O-CH2CH=CH2CH3COCH2CH2CH=CH2 The rate constant at 432 K is 2.68×10-4 /s. The rate constant will be______ /s at 474 K.
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 66.0 kJ/mol and a frequency factor of A1 = 8.30×1012 M−1s−1 . What is the rate constant, k, of this reaction at 27.0 ∘C ? An unknown reaction was observed, and the following data were collected: T (K) k (M−1⋅s−1) 352 109 426 185 Determine the activation energy for this reaction.
The gas phase reaction 2N2O5(g)->4NO2(g)+O2(g) has an activation energy of 103 kJ/mole, and the first order...
The gas phase reaction 2N2O5(g)->4NO2(g)+O2(g) has an activation energy of 103 kJ/mole, and the first order rate constant is 1.16x10^-8 min^-1 at 231 K. what is the rate constant at 211K?
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 64.0 kJ/mol and a frequency factor of A1 = 5.70×1012 M−1s−1 . What is the rate constant, k , of this reaction at 20.0 ∘C ? Express your answer with the appropriate units. Indicate the multiplication of units explicitly either with a multiplication dot (asterisk) or a dash. Part B An unknown reaction was observed, and the following data were collected: T (K ) k (M−1⋅s−1 ) 352 109 426 185 Determine...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1...
A certain reaction has an activation energy of 60.0 kJ/mol and a frequency factor of A1 = 2.80×1012 M−1s−1 . What is the rate constant, k, of this reaction at 30.0 ∘C ? I tried k = Ae^(-Ea/RT) but it's giving me 1.26E2 M^-1s^-1 which is wrong on my online homework, I did convert C to K and kJ/mol to J.
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of...
The gas phase reaction 2 N2O5(g) ? 4 NO2(g) + O2(g) has an activation energy of 103 kJ/mol, and the first order rate constant is 3.77×10-5 min-1 at 272 K. What is the rate constant at 292 K?
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor...
1) A first order reaction has an activation energy of 66.6 kJ/mol and a frequency factor (Arrhenius constant) of 8.78 x 1010 sec -1. Calculate the rate constant at 19 oC. Use 4 decimal places for your answer. 2) A first order reaction has a rate constant of 0.988 at 25 oC and 9.6 at 33 oC. Calculate the value of the activation energy in KILOJOULES (enter answer to one decimal place)
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate...
The activation energy of a reaction is 55.6 kJ/mol and the frequency factor is 1.5×1011/s. Calculate the rate constant of the reaction at 23 ∘C. Express your answer using two significant figures.
The rate constant for the decomposition of N2O5 is 7.78 × 10−7 at 273 K and...
The rate constant for the decomposition of N2O5 is 7.78 × 10−7 at 273 K and 3.46 × 10−5 at T2. If the activation energy is 1027 kJ/mol, what is the final temperature? 2 N2O5(g) → 4 NO2(g) + O2(g)
The decomposition of a compound in a first-order solution, with an activation energy of 52.3 kJ...
The decomposition of a compound in a first-order solution, with an activation energy of 52.3 kJ mol-1. A solution with 10% A decomposes 10% in 10 min at 10 ° C. What percentage of decomposition can be found with a 20% solution after 20 min at 20 ° C? Answer: 36.21%
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT