Question

When a 0.700 g sample of a mixture of volatile hydrocarbons is burned in a bomb...

When a 0.700 g sample of a mixture of volatile hydrocarbons is burned in a bomb calorimeter with a heat capacity of 2920 J/°C, the temperature rises by 6.00 °C.

What is the change in energy (in kilojoules)?


Calculate the energy change by the combustion of a 5.00 g sample of the same mixture.(kilojoules)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature...
A 0.553-g sample of diphenyl phthalate (C20H14O4) is burned in a bomb calorimeter and the temperature increases from 24.40 °C to 27.57 °C. The calorimeter contains 1.08×103 g of water and the bomb has a heat capacity of 877 J/°C. The heat capacity of water is 4.184 J g-1°C-1. Based on this experiment, calculate ΔE for the combustion reaction per mole of diphenyl phthalate burned. ______ kJ/mol
Mothballs are composed primarily of the hydrocarbon naphthalene (C10H8). When 1.025 g of naphthalene is burned...
Mothballs are composed primarily of the hydrocarbon naphthalene (C10H8). When 1.025 g of naphthalene is burned in a bomb calorimeter, the temperature rises from 24.25 ∘C to 32.33 ∘C.Find ΔErxn for the combustion of naphthalene. The heat capacity of the calorimeter, determined in a separate experiment, is 5.11kJ/∘C. Express the change in energy in kilojoules per mole to three significant figure
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases...
A 0.373-g sample of naphthalene (C10H8) is burned in a bomb calorimeter and the temperature increases from 24.90 °C to 27.80 °C. The calorimeter contains 1.05E3 g of water and the bomb has a heat capacity of 836 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of naphthalene burned (kJ/mol).
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases...
A 0.287-g sample of bianthracene (C28H18) is burned in a bomb calorimeter and the temperature increases from 25.30 °C to 27.50 °C. The calorimeter contains 1.03E3 g of water and the bomb has a heat capacity of 856 J/°C. Based on this experiment, calculate ΔE for the combustion reaction per mole of bianthracene burned (kJ/mol).
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing...
A 1.00g sample of the rocket fuel hydrazine N2H4 is burned in a bomb calorimeter containing 12.00g of water. The temperature of the water and bomb calorimeter rises from 24.62 degrees Celsius to 28.16 degrees Celsius. Assuming the heat capacity of the empty bomb calorimeter is 837J/degrees Celsius, calculate the heat of combustion of 1 mol of hydrazine in the bomb calorimeter. (The specific heat capacity of water is 4.184 J/g*degree Celsius .
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a...
1.) In an experiment, a 0.6319 g sample of para-benzoquinone (C6H4O2) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1.276×103 g of water. During the combustion the temperature increases from 23.67 to 26.17 °C. The heat capacity of water is 4.184 J g-1°C-1. The heat capacity of the calorimeter was determined in a previous experiment to be 786.6 J/°C. Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of para-benzoquinone...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams...
A 1.000 g sample of octane (C8H18) is burned in a bomb calorimeter containing 1200 grams of water at an initial temperature of 25.00ºC. After the reaction, the final temperature of the water is 33.20ºC. The heat capacity of the calorimeter (also known as the “calorimeter constant”) is 837 J/ºC. The specific heat of water is 4.184 J/g ºC. Calculate the heat of combustion of octane in kJ/mol.
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650...
. A 0.500 g sample of naphthalene (C10H8) is burned in a bomb calorimeter containing 650 grams of water at an initial temperature of 20.00 oC. After the reaction, the final temperature of the water is 26.4ºC. The heat capacity of the calorimeter is 420 J/oC. Using these data, calculate the heat of combustion of naphthalene in kJ/mol.
1. When 1.550 g of liquid hexane (C6H14) undergoes combustion in a bomb calorimeter, the temperature...
1. When 1.550 g of liquid hexane (C6H14) undergoes combustion in a bomb calorimeter, the temperature rises from 25.87∘C to 38.13∘C. Find ΔErxn for the reaction in kJ/mol hexane. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.73 kJ/∘C. Express your answer in kilojoules per mole to three significant figures. 2. The combustion of toluene has a ΔErxn of –3.91×103 kJ/mol. When 1.55 g of toluene (C7H8) undergoes combustion in a bomb calorimeter, the temperature...
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with...
A 2.50 mol sample of benzene (C6H6, 78.11 g/mol) was burned in a bomb calorimeter with a heat capacity of 800 J/°C. The calorimeter contained 100g of water (4.18J/g°C) and the temperature increased by 4°C. What is the molar enthalpy of combustion for this compound?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT