Question

By what factor does the rate constant increase when the temperature increases from 200. K to 400. K for a reaction with an activation energy of 845 J/mol?

Answer #1

If the rate of a reaction increases by a factor of 2.8 when the
temperature is raised from 20 ∘C to 30 ∘C, what is the value of the
activation energy in kJ/mol?
By what factor does the rate of this reaction increase when the
temperature is raised from 130 ∘C to 140 ∘C?

If the rate constant k of a reaction doubles when the
temperature increases from 121 °C to 279 °C, what is the activation
energy of the reaction in units of kJ/mol? Do not enter units with
your numerical answer. Do not use scientific notation.

The Arrhenius equation shows the relationship between the rate
constant k and the temperature T in kelvins and is typically
written as k=Ae−Ea/RT where R is the gas constant (8.314 J/mol⋅K),
A is a constant called the frequency factor, and Ea is the
activation energy for the reaction. However, a more practical form
of this equation is lnk2k1=EaR(1T1−1T2) which is mathmatically
equivalent to lnk1k2=EaR(1T2−1T1) where k1 and k2 are the rate
constants for a single reaction at two different absolute...

Reaction rates increase with temperature because as the
temperature increases:
The equilibrium constant increases
The activation energy increases
The activation energy decreases
The molecules have higher average kinetic energy
The molecules have lower average kinetic energy

The
Arrhenius equation shows the relationship between the rate constant
k and the temperature Tin kelvins and is
typically written as
k=Ae−Ea/RT
where R is the gas constant (8.314 J/mol⋅K), Ais
a constant called the frequency factor, and Ea is
the activation energy for the reaction.
However, a more practical form of this equation is
lnk2k1=EaR(1T1−1T2)
which is mathmatically equivalent to
lnk1k2=EaR(1T2−1T1)
where k1 and k2 are the rate constants for a
single reaction at two different absolute temperatures
(T1and...

± The Arrhenius Equation
The Arrhenius equation shows the relationship between the rate
constant k and the temperature T in kelvins and
is typically written as
k=Ae−Ea/RT
where R is the gas constant (8.314 J/mol⋅K), A
is a constant called the frequency factor, and Ea
is the activation energy for the reaction.
However, a more practical form of this equation is
lnk2k1=EaR(1T1−1T2)
which is mathmatically equivalent to
lnk1k2=EaR(1T2−1T1)
where k1 and k2 are the rate constants for a
single reaction...

A. The Arrhenius
equation shows the relationship between the rate constant
k and the temperature T in kelvins
and is typically written as
k=Ae−Ea/RT
where R is the gas constant (8.314 J/mol⋅K), A
is a constant called the frequency factor, and Ea
is the activation energy for the reaction.
However, a more practical form of this equation is
lnk2k1=EaR(1T1−1T2)
which is mathematically equivalent to
lnk1k2=EaR(1T2−1T1)
where k1 and k2 are the rate constants for a
single reaction at two different...

the rate constant for the reaction shown below is 2.6x10^-8
L/mol*s when the reaction proceeds at 300K. The Activation Energy
is 98000J/mol. Determine the magnitude of the frequency factor for
the reaction. If the temperature changed to 310K, there rate
constant would change. The ration of K at 310 K is closest to what
whole number?

± The Arrhenius Equation
The Arrhenius equation shows the relationship between the rate
constant k and the temperature T in kelvins and
is typically written as
k=Ae−Ea/RT
where R is the gas constant (8.314 J/mol⋅K), A is
a constant called the frequency factor, and Eais
the activation energy for the reaction.
However, a more practical form of this equation is
lnk2k1=EaR(1T1−1T2)
which is mathmatically equivalent to
lnk1k2=EaR(1T2−1T1)
where k1 and k2 are the rate constants for a
single reaction at...

There are several factors that affect the rate of a reaction.
These factors include temperature, activation energy, steric
factors (orientation), and also collision frequency, which changes
with concentration and phase. All the factors that affect reaction
rate can be summarized in an equation called the Arrhenius
equation:
k=Ae−Ea/RT
where k is the rate constant, A is the
frequency factor, Ea is the activation energy,
R=8.314 J/(mol⋅K) is the universal gas constant, and
T is the absolute temperature.
__________________________________________________
A certain...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 11 minutes ago

asked 15 minutes ago

asked 18 minutes ago

asked 45 minutes ago

asked 53 minutes ago

asked 53 minutes ago

asked 54 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago