Question

A 0.351 L solution of 1.31 M ascorbic acid (Ka1 = 7.9e-5 and Ka2 = 1.6e-12)...

A 0.351 L solution of 1.31 M ascorbic acid (Ka1 = 7.9e-5 and Ka2 = 1.6e-12) is titrated with 1.65 M NaOH. What will the pH of the solution be when 0.4933 L of the NaOH has been added?

Homework Answers

Answer #1

mmol of acid = MV = 0.351*1.31 = 0.45981

mmol of base = M V= 1.65*0.4933 = 0.813945

therefore;

mmol of H+ = 2*mmol of acid = 2*0.45981 = 0.91962 mmol of H+

therefore,

H+ + OH- =H2O

mmol of H+ left = 0.91962 - 0.813945 = 0.105675

mmol of conjugate formed = 0.813945

therefore...

this is

HA- + OH- <--> H2O + A-2

which is a buffer, since HA- and A-2 are both present

weak acid + conjugate base

pH = pKa2 + log(A-2/HA)

pKa2 = -log(Ka2) = -log(1.6*10^-12) = 11.7958

now..

pH = 11.795+ log(0.813945 /0.105675)

pH = 12.681

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.351 L solution of 1.89 M ascorbic acid (Ka1 = 7.9e-5 and Ka2 = 1.6e-12)...
A 0.351 L solution of 1.89 M ascorbic acid (Ka1 = 7.9e-5 and Ka2 = 1.6e-12) is titrated with 1.85 M KOH. What will the pH of the solution be when 0.6419 L of the KOH has been added?
A 0.251 L solution of 1.57 M sulfurous acid (Ka1 = 1.5e-2 and Ka2 = 1.0e-7)...
A 0.251 L solution of 1.57 M sulfurous acid (Ka1 = 1.5e-2 and Ka2 = 1.0e-7) is titrated with 1.85 M NaOH. What will the pH of the solution be when 0.3600 L of the NaOH has been added?
A 0.551 L solution of 1.81 M oxalic acid (Ka1 = 6.5e-2 and Ka2 = 6.1e-5)...
A 0.551 L solution of 1.81 M oxalic acid (Ka1 = 6.5e-2 and Ka2 = 6.1e-5) is titrated with 1.85 M KOH. What will the pH of the solution be when 0.9326 L of the KOH has been added?
Consider a the titration of 0.531 L of 0.969 M ascorbic acid (H2C6H6O6) with 1.91 M...
Consider a the titration of 0.531 L of 0.969 M ascorbic acid (H2C6H6O6) with 1.91 M NaOH. What is the pH at the second equivalence point of the titration? ka1: 7.9*10^-5 ka2: 1.6*10^-12
Ascorbic acid has two dissociation constants, Ka1=7.9 x 10-5 and Ka2=1.6 x 10-12. What reactions do...
Ascorbic acid has two dissociation constants, Ka1=7.9 x 10-5 and Ka2=1.6 x 10-12. What reactions do these constants refer to? Why is one of sthem so much larger than the other? Which one should you use to calculate the theoretical pH of a 0.50 M solution of ascorbic acid, and why?
Calculate the pH and the equilibrium concentration of C6H6O62- in a 6.12×10-2 M ascorbic acid solution,...
Calculate the pH and the equilibrium concentration of C6H6O62- in a 6.12×10-2 M ascorbic acid solution, H2C6H6O6 (aq). For H2C6H6O6, Ka1 = 7.9×10-5 and Ka2 = 1.6×10-12 pH = [C6H6O62-] = M
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00 L of a...
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00 L of a 1.00 M ascorbic acid solution with NaOH until a pH of 3.473 was achieved (assuming no volume change). To this buffer 1.300 moles of NaOH were added (assume no volume change). What is the final pH of this solution? For this problem we can assume the 5% assumption is valid.
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00 L of a...
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00 L of a 1.00 M ascorbic acid solution with NaOH until a pH of 3.473 was achieved (assuming no volume change). To this buffer 1.300 moles of NaOH were added (assume no volume change). What is the final pH of this solution? For this problem we can assume the 5% assumption is valid.
Calculate the pH at the second stoichiometric point when 130 mL of a 0.030 M solution...
Calculate the pH at the second stoichiometric point when 130 mL of a 0.030 M solution of glutaric acid (Ka1=4.54*10-5, Ka2=5.4*10-6) is titrated with 1.0 M NaOH.
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00L of a 1.00...
A buffer solution based upon ascorbic acid (H2C6H6O6) was created by treating 1.00L of a 1.00 M ascorbic acid solution with NaOH until a pH of 3.602 was achieved (assuming no volume change). To this buffer 1.370 moles of NaOH were added (assume no volume change). What is the final pH of this solution? For this problem we can assume the 5% assumption is valid.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT