Question

Please include all steps and significant digits and units. 2N2o5 (g) --> 4No2 (g) + O2...

Please include all steps and significant digits and units.

2N2o5 (g) --> 4No2 (g) + O2 (g)

The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide at a set temperature.

Time (s)

0

100

200

300

400

500

600

700

[N2O5]    

0.0200

0.0169

0.0142

0.0120

0.0101

0.0086

0.0072

0.0061

a) Graphically determine the order of the reaction.

b) Calculate the rate constant for the reaction.

c) Calculate the concentration of dinitrogen pentoxide in the reaction vessel after 350 seconds.

Homework Answers

Answer #1

Just plot Time Vs the concentration of N2O5. If you are getting a straight line,it may be a first order reaction. Which depends on the concentration of only one reactant.

see the plot below

To assure again the order of reaction, consider the integrated rate equation for a first order reaction

So, that we need to plot a graph between ln[A] and time ,t in XY scatter form, then add trendline to get rate constant or -k value from the graph.

Here the equation on the graph is the equation for a straight line, from that the value of -k can be determined.

y= -0.001697x-3.91281

that is -k or rate constant =-0.001697

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide...
The following data were obtained in a kinetic run from the decomposition of gaseous dinitrogen pentoxide at a set temperature. 2N2O5(g) = 4NO2(g) + O2(g) Time (s) 0 100 200 300 400 500 600 700 [N2O5]     0.0200 0.0169 0.0142 0.0120 0.0101 0.0086 0.0072 0.0061 a.Graphically determine the order of the reaction. b.Calculate the rate constant for the reaction. c.Calculate the concentration of dinitrogen pentoxide in the reaction vessel after 350 seconds.
Time(s) Concentration (M) N2O5 NO2 O2 0 0.0200 0 0 100 0.0169 0.0063 0.0016 200 0.0142...
Time(s) Concentration (M) N2O5 NO2 O2 0 0.0200 0 0 100 0.0169 0.0063 0.0016 200 0.0142 0.0115 0.0029 300 0.0120 0.0160 0.0040 400 0.0101 0.0197 0.0049 500 0.0086 0.0229 0.0057 600 0.0072 0.0256 0.0064 700 0.0061 0.0278 0.0070 Concentrations as a Function of Time at 55 ∘ for the Reaction 2N2O5(g)⟶4NO2(g)+O2(g) A) Use the data in the table to calculate the average rate of decomposition of N2O5 during the time interval 100-200 s B) Use the data in the table...
The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x...
The rate constant for the reaction 2N2O5(g) → 4NO2(g) + O2(g) is equal to 3.41 x 10–5 s–1 at 30 ºC. If the initial concentration of N2O5 is 0.446 M what concentration of NO2 will be observed after 175 minutes? Assume that initially no NO2 was present in the reaction vessel.
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At...
13) For the reaction: 2N2O5(g) ?4NO2(g) +O2(g) the rate law is: ?[O2] ?t = k[N2O5] At 300 K, the half-life is 2.50
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2...
the decomposition of N2O5 can be described by equation 2N2O5 (soln) = 4NO2 (soln) + O2 (g) t (s)    [N2O5](M) 0 ----- 2.62 215----2.29 506----1.91 795----1.59 given data for reaction at 45°C . A). interval 0-215s reaction rate ? M/s B). interval 215-506s reaction rate? M/s C). interval 506-795s reaction rate? M/s
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.10×10−2 mol of N2O5(g) in a volume of 1.8 L . How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)?4NO2(g)+O2(g), at 70?C is 6.82×10?3s?1. Suppose we start with 2.90×10?2 mol of N2O5(g) in a volume of 1.5 L . a) How many moles of N2O5 will remain after 5.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 2.0×10?2 mol? c) What is the half-life of N2O5 at 70?C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10^−3 s−1. Suppose we start with 2.60×10^−2 mol of N2O5(g) in a volume of 2.4 L . How many moles of N2O5 will remain after 4.0 min ? How many minutes will it take for the quantity of N2O5 to drop to 1.9×10^−2 mol ? What is the half-life of N2O5 at 70∘C?
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose...
The first-order rate constant for the decomposition of N2O5, 2N2O5(g)→4NO2(g)+O2(g) at 70∘C is 6.82×10−3 s−1. Suppose we start with 2.30×10−2 mol of N2O5(g) in a volume of 1.8 L . a) How many moles of N2O5 will remain after 6.0 min ? b) How many minutes will it take for the quantity of N2O5 to drop to 1.6×10−2 mol ? c) What is the half-life of N2O5 at 70∘C?
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5]...
For the reaction 2N2O5(g) → 4NO2(g) + O2(g), the following data were collected: t (minutes) [N2O5] (mol/L) 0 1.24 × 10–2 10. 0.92 × 10–2 20. 0.68 × 10–2 30. 0.50 × 10–2 40. 0.37 × 10–2 50. 0.28 × 10–2 70. 0.15 × 10–2 Reference: Ref 12-10 The half-life of this reaction is approximately