Question

The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants...

The boiling point of an aqueous solution is 101.88 °C. What is the freezing point? Constants can be found here.

Constants for freezing-point depression and boiling-point elevation calculations at 1 atm:

Solvent Formula Kf value*

(°C/m)

Normal freezing

point (°C)

Kb value

(°C/m)

Normal boiling

point (°C)

water H2O 1.86 0.00 0.512 100.00
benzene C6H6 5.12 5.49 2.53 80.1
cyclohexane C6H12 20.8 6.59 2.92 80.7
ethanol C2H6O 1.99 –117.3 1.22 78.4
carbon
tetrachloride
CCl4 29.8 –22.9 5.03 76.8
camphor C10H16O 37.8 176

Homework Answers

Answer #1

Apply Colligative properties

This is a typical example of colligative properties.

Recall that a solute ( non volatile ) can make a depression/increase in the freezing/boiling point via:

dTf = -Kf*molality * i

dTb = Kb*molality * i

where:

Kf = freezing point constant for the SOLVENT; Kb = boiling point constant for the SOLVENT;

molality = moles of SOLUTE / kg of SOLVENT

i = vant hoff coefficient, typically the total ion/molecular concentration.

At the end:

Tf mix = Tf solvent - dTf

Tb mix = Tb solvent - dTb

get dTb

dTb = 101.88-100 = 1.88°C

then

dTb = i*m*Kb

1.88 = i*m * 0.512

im = 1.88/0.512 = 3.671875

now, substitute in dTf and Kf

dTf = -Kf*molality * i

dTf = -Kf*3.671875

for water, 1.86

dTf = -1.86*3.671875

dTf = -6.829°C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 1.52 m SnCl4(aq). Constants may be found here. vent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may...
Assuming 100% dissociation, calculate the freezing point and boiling point of 2.99 m AgNO3(aq). Constants may be found here. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1 cyclohexane C6H12 20.8 6.59 2.92 80.7 ethanol C2H6O 1.99 –117.3 1.22 78.4 carbon tetrachloride   CCl4 29.8 –22.9 5.03 76.8 camphor   C10H16O 37.8 176
Menthol is a crystalline substance with a peppermint taste and odor. When 0.606 g of menthol...
Menthol is a crystalline substance with a peppermint taste and odor. When 0.606 g of menthol is dissolved in 25.0 g of cyclohexane, the freezing point of the solution is lowered by 3.23 °C. The freezing point and Kf constant for cyclohexane can be found here. Calculate the molar mass of menthol. Solvent Formula Kf value* (°C/m) Normal freezing point (°C) Kb value (°C/m) Normal boiling point (°C) water H2O 1.86 0.00 0.512 100.00 benzene C6H6 5.12 5.49 2.53 80.1...
1- Express the concentration of a 0.0420 M0.0420 M aqueous solution of fluoride, F−,F−, in mass...
1- Express the concentration of a 0.0420 M0.0420 M aqueous solution of fluoride, F−,F−, in mass percentage and in parts per million (ppm). Assume the density of the solution is 1.00 g/mL.1.00 g/mL. mass percentage: ppm: 2- A solution is made by dissolving 0.618 mol0.618 mol of nonelectrolyte solute in 795 g795 g of benzene. Calculate the freezing point, Tf,Tf, and boiling point, Tb,Tb, of the solution. Constants can be found in the table of colligative constants. Tf= Tb= Solvent...
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile\'s...
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile\'s engine cooling system. If your car\'s cooling system holds 6.00 gallons, what is the boiling point of the solution? Make the following assumptions in your calculation: at normal filling conditions, the densities of engine coolant and water are 1.11 g/mL and 0.998 g/mL respectively. Assume that the engine coolant is pure ethylene glycol (HOCH2CH2OH), which is non-ionizing and non-volatile, and that the pressure remains...
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile\'s...
A 50/50 blend of engine coolant and water (by volume) is usually used in an automobile\'s engine cooling system. If your car\'s cooling system holds 6.50 gallons, what is the boiling point of the solution? Make the following assumptions in your calculation: at normal filling conditions, the densities of engine coolant and water are 1.11 g/mL and 0.998 g/mL respectively. Assume that the engine coolant is pure ethylene glycol (HOCH2CH2OH), which is non-ionizing and non-volatile, and that the pressure remains...
The boiling point of an aqueous solution is 101.77 °C. What is the freezing point? Constants...
The boiling point of an aqueous solution is 101.77 °C. What is the freezing point? Constants can be found here.
Calculate the freezing point and boiling point of a solution containing 13.6 g of naphthalene (C10H8)...
Calculate the freezing point and boiling point of a solution containing 13.6 g of naphthalene (C10H8) in 110.0 mL of benzene. Benzene has a density of 0.877 g/cm3. A)Calculate the freezing point of a solution. (Kf(benzene)=5.12∘C/m.) B)Calculate the boiling point of a solution. (Kb(benzene)=2.53∘C/m.)
Calculate the freezing point and boiling point of a solution containing 18.4 g of naphthalene (C10H8)...
Calculate the freezing point and boiling point of a solution containing 18.4 g of naphthalene (C10H8) in 114.0 mL of benzene. Benzene has a density of 0.877 g/cm3. (Kf(benzene)=5.12∘C/m.) (Kb(benzene)=2.53∘C/m.)
A certain solution of benzoic acid in benzene has a freezing point of 3.1°C and a...
A certain solution of benzoic acid in benzene has a freezing point of 3.1°C and a normal boiling point of 82.6°C. Explain these observations and suggest structures of the solute molecules at these two temperatures. Kfp = 5.12°C/m and Kbp = 2.53°C/m.