Question

Using standard thermodynamic tables and the following data, compute the crystal enthalpy of AgBr(c) using the...

Using standard thermodynamic tables and the following data, compute the crystal enthalpy of AgBr(c) using the Born-Haber cycle. The CRC Handbook lists the value as 904 kJ/mol. Compute the % difference between this value and your result.

Data:

Ag(g) Ag+(g) + e-                    7.576 eV

Br(g) + e- Br-(g)                      324.5 kJ/mol

Homework Answers

Answer #1

Lattice energy= Heat of formation- Heat of atomization- Dissociation energy- Ionization energies- Electron Affinities

Heat of formation of AgBr = −99.5 KJ/mol

Heat of atomization of Ag = 285 KJ/mol

BOnd dissociation energy of Br2 = 192 KJ/mol / 2 = 96 KJ/mol

Electron affinity = - 324.5 KJ/mol (energy is released)

Ionisation energy = 7.576 eV = 7.576*1.602*10^-19*6*10^23 = 728.205 KJ/mol

1 eV = 1.602*10^-19 J ( for 1 mole we are calculating)

Substituting all values

Lattice energy = - 884.205 KJ/mol

% difference = [904 - 884.205] *100 / 884.205 = 2.46%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the reaction 2CO2(g) + 5H2(g)C2H2(g) + 4H2O(g) Using the standard thermodynamic data in the tables...
Consider the reaction 2CO2(g) + 5H2(g)C2H2(g) + 4H2O(g) Using the standard thermodynamic data in the tables linked above, calculate G for this reaction at 298.15K if the pressure of each gas is 17.64 mm Hg. ANSWER:_____ kJ/mol
1. NH4Cl(aq)<->NH3(g) + HCl(aq) Using the standard thermodynamic data in the tables linked above, calculate the...
1. NH4Cl(aq)<->NH3(g) + HCl(aq) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K. 2. HCl(g) + NH3(g)NH4Cl(s) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K.
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2....
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2. Na(g) → Na+(g) + e-(g)    ΔrH = IE1 = 500 kJ mol-1 Na(s) → Na(g)    ΔsubH = 107 kJ mol-1 F-(g) → F(g) + e-(g)    ΔrH = EA1 = 329 kJ mol-1 Na(s) + 1/2 F2(g) → NaF(s)    ΔfH = -569 kJ mol-1 Na+(g) + F-(g) → NaF(s)    ΔlattH = -928 kJ mol-1
Consider the reaction N2(g) + 2O2(g)----->2NO2(g) Using the standard thermodynamic data in the tables linked above,...
Consider the reaction N2(g) + 2O2(g)----->2NO2(g) Using the standard thermodynamic data in the tables linked above, calculate Grxn for this reaction at 298.15K if the pressure of each gas is 29.25 mm Hg. Consider the reaction 4HCl(g) + O2(g)------>2H2O(g) + 2Cl2(g) Using the standard thermodynamic data in the tables linked above, calculate G for this reaction at 298.15K if the pressure of each gas is 12.40 mm Hg.
H2(g) + C2H4(g)C2H6(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium...
H2(g) + C2H4(g)C2H6(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K.
Consider the reaction 2H2O2(l)2H2O(l) + O2(g) Using the standard thermodynamic data in the tables linked above,...
Consider the reaction 2H2O2(l)2H2O(l) + O2(g) Using the standard thermodynamic data in the tables linked above, calculate the equilibrium constant for this reaction at 298.15K.
Using the thermochemical data and an estimated value of -2235.2 kJ/mol for the lattice energy for...
Using the thermochemical data and an estimated value of -2235.2 kJ/mol for the lattice energy for potassium oxide, calculate the value for the second electron affinity of oxygen [O− + e- → O2−]. (The answer is 748.5 kJ/mol) Quantity Numerical Value (kJ/mol) Enthalpy of atomization of K 89 Ionization energy of K 418.8 Enthalpy of formation of solid K2O -363 Enthalpy of formation of O(g) from O2(g) 249.1 First electron attachment enthalpy of O   -141.0
Compute for the enthalpy (heat) of dissolution of a salt (NH4Cl) in Joules using the following...
Compute for the enthalpy (heat) of dissolution of a salt (NH4Cl) in Joules using the following data: Mass of salt, g = 5.00 Mass of calorimeter, g = 5.10 Mass of calorimeter + water, g = 30.204 Initial Temperature, °C = 25.35 Final Temperature. °C = 17.19 Use the following: MWNH4Cl = 53.5 g/mol Specific HeatNH4Cl = 1.57 J/g·°C
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below....
4. Thermodynamic data for C(graphite) ​and C(​​diamond)​ at 298 K is given in the table below. delta Hf​o ​(kJ/mol) o​ (J/mol K C​(graphite) 0.0 5.740 C​(diamond) 1.895 2.377 a) Calculate delta H​o​ and delta S​o and delta G​o ​for the transformation of 1 mole of graphite to diamond at 298 K. b) Is there a tempature at which this transformation will occur spontaneously at atmospheric pressure? Justify your answer. 8. Methanol can be made using the Fischer-Tropsch process according to...
4. Estimate the heat of vaporization (kJ/mol) of benzene at 25°C, using each of the following...
4. Estimate the heat of vaporization (kJ/mol) of benzene at 25°C, using each of the following correlations and data: a) Trouton’s rule and the normal boiling point b) The heat of vaporization at the normal boiling point and Watson's correlation. c) The Clausius-Clapeyron equation and boiling points at 50 mm Hg and 150 mm Hg. d) Tables B.1 and B.2. Clearly specify the thermodynamic path you are following. e) Find a tabulated value of the heat of vaporization of benzene...