Question

A 1.49 L buffer solution consists of 0.186 M butanoic acid and 0.258 M sodium butanoate....

A 1.49 L buffer solution consists of 0.186 M butanoic acid and 0.258 M sodium butanoate. Calculate the pH of the solution following the addition of 0.062 moles of NaOH. Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52 × 10-5.

Homework Answers

Answer #1

mol of NaOH added = 0.062 mol

C3H8COOH will react with OH- to form C3H8COO-

Before Reaction:

mol of C3H8COO- = 0.258 M *1.49 L

mol of C3H8COO- = 0.3844 mol

mol of C3H8COOH = 0.186 M *1.49 L

mol of C3H8COOH = 0.2771 mol

after reaction,

mol of C3H8COO- = mol present initially + mol added

mol of C3H8COO- = (0.3844 + 0.062) mol

mol of C3H8COO- = 0.4464 mol

mol of C3H8COOH = mol present initially - mol added

mol of C3H8COOH = (0.2771 - 0.062) mol

mol of C3H8COOH = 0.2151 mol

Ka = 1.52*10^-5

pKa = - log (Ka)

= - log(1.52*10^-5)

= 4.8182

since volume is both in numerator and denominator, we can use mol instead of concentration

we have below equation to be used:

This is Henderson–Hasselbalch equation

pH = pKa + log {[conjugate base]/[acid]}

= 4.8182+ log {0.4464/0.2151}

= 5.14

Answer: 5.14

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.37 L buffer solution consists of 0.136 M butanoic acid and 0.337 M sodium butanoate....
A 1.37 L buffer solution consists of 0.136 M butanoic acid and 0.337 M sodium butanoate. Calculate the pH of the solution following the addition of 0.070 moles of NaOH. Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52 × 10-5. pH =
A 1.45 L buffer solution consists of 0.134 M butanoic acid and 0.344 M sodium butanoate....
A 1.45 L buffer solution consists of 0.134 M butanoic acid and 0.344 M sodium butanoate. Calculate the pH of the solution following the addition of 0.063 moles of NaOH. Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52 × 10-5.
A 1.35 L buffer solution consists of 0.173 M butanoic acid and 0.309 M sodium butanoate....
A 1.35 L buffer solution consists of 0.173 M butanoic acid and 0.309 M sodium butanoate. Calculate the pH of the solution following the addition of 0.076 moles of NaOH. Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52 × 10-5.
A 1.36 L buffer solution consists of 0.184 M butanoic acid and 0.331 M sodium butanoate....
A 1.36 L buffer solution consists of 0.184 M butanoic acid and 0.331 M sodium butanoate. Calculate the pH of the solution following the addition of 0.068 moles of NaOH. Assume that any contribution of the NaOH to the volume of the solution is negligible. The Ka of butanoic acid is 1.52 × 10^-5.
A 1.31 L buffer solution consists of 0.281 M propanoic acid and 0.104 M sodium propanoate....
A 1.31 L buffer solution consists of 0.281 M propanoic acid and 0.104 M sodium propanoate. Calculate the pH of the solution following the addition of 0.068 moles of HCl. Assume that any contribution of the HCl to the volume of the solution is negligible. The Ka of propanoic acid is 1.34 × 10-5.
To a 1.00 L buffer solution made of 1.95 M hypochlorous acid (HClO) and 1.03 M...
To a 1.00 L buffer solution made of 1.95 M hypochlorous acid (HClO) and 1.03 M potassium hypochlorite (KClO) was added 0.509 moles of NaOH (assume no volume change to the solution). What is the final pH of this buffer assuming Ka hypochlorous acid = 2.90e-8?
1. A buffer is made by mixing 1.250 mol formic acid, HCOOH, with 0.750 mol sodium...
1. A buffer is made by mixing 1.250 mol formic acid, HCOOH, with 0.750 mol sodium formate, HCOONa in enough water for a total volume of 1.00L. The Ka of formic acid is 1.87 x 10-4 a. What is the pH of this buffer? b. If 0.075 mol HCl is added to this buffer, what is the pH of the resulting buffer? (assume no volume changes) c. If 0.055 mol NaOH is added to this buffer, what is the pH...
A buffer solution contains 0.52 mol of hypochlorous acid (HClO) and 0.39 mol of sodium hypochlorite...
A buffer solution contains 0.52 mol of hypochlorous acid (HClO) and 0.39 mol of sodium hypochlorite (NaOCl) in 3.00 L. The Ka of hypochlorous acid (HClO) is Ka = 3e-08. (a) What is the pH of this buffer? pH =__________. (b) What is the pH of the buffer after the addition of 0.21 mol of NaOH? (assume no volume change) pH = ___________. (c) What is the pH of the original buffer after the addition of 0.20 mol of HI?...
A buffer solution contains 0.27 mol of ascorbic acid (HC6H7O6) and 0.76 mol of sodium ascorbate...
A buffer solution contains 0.27 mol of ascorbic acid (HC6H7O6) and 0.76 mol of sodium ascorbate (NaC6H7O6) in 8.20 L. The Ka of ascorbic acid (HC6H7O6) is Ka = 8e-05. (a) What is the pH of this buffer? pH =    (b) What is the pH of the buffer after the addition of 0.08 mol of NaOH? (assume no volume change) pH =   (c) What is the pH of the original buffer after the addition of 0.39 mol of HI? (assume...
A buffer with a pH of 4.24 contains 0.39 M of sodium benzoate and 0.36 M...
A buffer with a pH of 4.24 contains 0.39 M of sodium benzoate and 0.36 M of benzoic acid. What is the concentration of [H ] in the solution after the addition of 0.050 mol of HCl to a final volume of 1.4 L? Assume that any contribution of HCl to the volume is negligible.