Question

The standard molar enthalpy of formation, of diborane cannot be determined directly because the compound cannot...

The standard molar enthalpy of formation, of diborane cannot be determined directly because the compound cannot be prepared by reaction of boron and hydrogen. However, the value can be calculated. Calculate the standard enthalpy of formation of gaseous diborane(B2H6) using the following thermochemical information:

i) 4B(s) + 3O2(g) --> WB2O3(S) = -2509.1kJ

ii) 2H2(g) + O2(g) --> 2H2O(l) = - 571.7kJ

iii) B2H6(g) + 3O2(g) --> B2O3(s) + 3H2O(l) = -2147.5 kJ

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s)...
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s) + 3 O2(g) --> 2 B2O3................................deltaHrxn= -2543.9 kj/mol H2(g) + 1/2 O2(g) --> H2O(g).............................deltaHrxn= -241.8 kj/mol B2H6(g) + O2(g) --> B2O3(s) + 3 H2O(g)..........deltaHrxn= -2032.9kj/mol
Calculate the standard enthalpy of formation of liquid water (H2O) using the following thermochemical information: 4...
Calculate the standard enthalpy of formation of liquid water (H2O) using the following thermochemical information: 4 B(s) + 3 O2(g) 2 B2O3(s) H = -2509.1 kJ B2H6(g) + 3 O2(g) B2O3(s) + 3 H2O(l) H = -2147.5 kJ B2H6(g) 2 B(s) + 3 H2(g) H = -35.4 kJ
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The...
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The enthalpy of formation of Fe3O4 is −1117 kJ/mol. 8 Al(s) + 3 Fe3O4(s) → 4 Al2O3(s) + 9 Fe(s) 2. a) Nitroglycerin is a powerful explosive, giving four different gases when detonated. 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2 (g) + 6 CO2(g) + 5 H2O(g) Given that the enthalpy of formation of nitroglycerin, ΔHf°, is −364 kJ/mol, calculate the energy (heat at...
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard...
The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard molar enthalpy of formation for liquid hydrazine (N2H4)?      N2H4(l) + O2(g) → N2(g) + 2H2O(g)      ΔH° = ‒534.2 kJ    ‒292 kJ/mol     292 kJ/mol     ‒146 kJ/mol 50.6 kJ/mol ‒50.6 kJ/mol
Hess's law states that "the heat released or absorbed in a chemical process is the same...
Hess's law states that "the heat released or absorbed in a chemical process is the same whether the process takes place in one or in several steps." It is important to recall the following rules: When two reactions are added, their enthalpy values are added. When a reaction is reversed, the sign of its enthalpy value changes. When the coefficients of a reaction are multiplied by a factor, the enthalpy value is multiplied by that same factor. Part A Calculate...
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the...
Calculate the standard enthalpy change, ΔH°rxn, in kJ for the following chemical equation, using only the thermochemical equations below: 4KO2(s) + 2H2O(l) → 4KOH(aq) + 3O2(g) Report your answer to three significant figures in scientific notation. Equations:   ΔH°rxn (kJ) 4K(s) + O2(g) → 2K2O(s) -726.4 K(s) + O2(g) → KO2(s) -284.5 K2O(s) + H2O(l) → 2KOH(aq) -318
Use Hess's Law to calculate the enthalpy change for recovering tungsten from its oxide using the...
Use Hess's Law to calculate the enthalpy change for recovering tungsten from its oxide using the reaction:WO3(s) + 3H2(g) --> W(s)+3H2O(g) from the following data : 2W(s)+ 3O2(g)-->2WO3(s) , change in H = -1685.4 kJ 2H2(g)+O2(g)---> 2H2O(g) , change in H = -477.84 kJ
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
Calculate the standard enthalpy of formation of dinitrogen pentoxide (N2O5) using the following thermochemical information: 2...
Calculate the standard enthalpy of formation of dinitrogen pentoxide (N2O5) using the following thermochemical information: 2 H2O(l) 2 H2(g) + O2(g) H = +571.7 kJ 2 HNO3(l) N2O5(g) + H2O(l) H = +92.0 kJ N2(g) + 3 O2(g) + H2(g) 2 HNO3(l) H = -348.2 kJ H = kJ
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...