6A) Consider the following reaction: 2CH2Cl2(g) CH4(g) + CCl4(g) If 0.432 moles of CH2Cl2(g), 0.263 moles of CH4, and 0.590 moles of CCl4 are at equilibrium in a 17.7 L container at 576 K, the value of the equilibrium constant, Kc, is
6B)Consider the following reaction:
COCl2(g) CO(g) + Cl2(g)
If 3.59×10-3 moles of COCl2, 0.265 moles of CO, and 0.211 moles of
Cl2 are at equilibrium in a 12.3 L container at 772 K, the value of
the equilibrium constant, Kp, is
A)
[CH2Cl2] = number of mol of CH2Cl2 / volume in L
= 0.432 mol / 17.7 L
= 0.0244 M
[CH4] = number of mol of CH4 / volume in L
= 0.263 mol / 17.7 L
= 0.0149 M
[CCl4] = number of mol of CCl4 / volume in L
= 0.590 mol / 17.7 L
= 0.0333 M
Now use:
Kc = [CH4][CCl4] / [CH2Cl2]^2
= (0.0149 * 0.0333) / (0.0244)^2
= 0.833
Answer: 0.833
B)
for COCl2:
Given:
V = 12.3 L
n = 3.59e-3 mol
T = 772.0 K
use:
P * V = n*R*T
P * 12.3 L = 0.0036 mol* 0.08206 atm.L/mol.K * 772 K
P = 0.0185 atm
for CO:
Given:
V = 12.3 L
n = 0.265 mol
T = 772.0 K
use:
P * V = n*R*T
P * 12.3 L = 0.265 mol* 0.08206 atm.L/mol.K * 772 K
P = 1.3649 atm
for Cl2:
Given:
V = 12.3 L
n = 0.211 mol
T = 772.0 K
use:
P * V = n*R*T
P * 12.3 L = 0.211 mol* 0.08206 atm.L/mol.K * 772 K
P = 1.0867 atm
Now use:
Kp = p(Cl2)*p(CO)/p(COCl2)
= (1.0867 * 1.3649)/ (0.0185)
= 80.2
Answer: 80.2
Get Answers For Free
Most questions answered within 1 hours.