Question

13.0 moles of gas are in a 7.00 L tank at 20.5 ∘C . Calculate the...

13.0 moles of gas are in a 7.00 L tank at 20.5 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.

Express your answer with the appropriate units.

Homework Answers

Answer #1

The van der Waals equation gas molecules
(P +n2a/v2 )(V - nb) = nRT
for methane gas

(P + 132 X 2.3/(7)2)(7-13X0.0430) = 13 X0.0821 X 293.5 T=273+20.5=293.5K, R = 0.0821 liter·atm/mol·K

(P + 7.9326) X 6.441 = 313.25255

P = 48.6341484 - 7.9326 = 40.7015 atm.

for ideal gas the equation PV = nRT

P X 7 = 13 X 0.0821 X 293.5

P =44.75036 atm

the difference in pressure between methane and an ideal gas under these conditions is = 40.7015 atm - 44.75036 atm = 4.0488 atm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
12.0 moles of gas are in a 5.00 L tank at 20.5 ∘C . Calculate the...
12.0 moles of gas are in a 5.00 L tank at 20.5 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol. Express your answer with the appropriate units.
Part C 13.0 moles of gas are in a 5.00 L tank at 22.5 ∘C ....
Part C 13.0 moles of gas are in a 5.00 L tank at 22.5 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol. Express your answer with the appropriate units. pressure difference = Please enter pressure difference with Value and units.
Part C 15.0 moles of gas are in a 3.00 L tank at 23.1 ∘C ....
Part C 15.0 moles of gas are in a 3.00 L tank at 23.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol. Express your answer with the appropriate units. Hints pressure difference =
15.0 moles of gas are in a 4.00 L tank at 21.2 ∘C . Calculate the...
15.0 moles of gas are in a 4.00 L tank at 21.2 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
12.0 moles of gas are in a 4.00 L tank at 24.4 ∘C . Calculate the...
12.0 moles of gas are in a 4.00 L tank at 24.4 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
12.0 moles of gas are in a 4.00 L tank at 21.6 ∘C . Calculate the...
12.0 moles of gas are in a 4.00 L tank at 21.6 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
15.0 moles of gas are in a 4.00 L tank at 20.1 ∘C . Calculate the...
15.0 moles of gas are in a 4.00 L tank at 20.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
14.0 moles of gas are in a 8.00 L tank at 21.0 ∘C . Calculate the...
14.0 moles of gas are in a 8.00 L tank at 21.0 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2 and b=0.0430 L/mol.
15.0 moles of gas are in a 5.00 L tank at 23.1 ∘C . Calculate the...
15.0 moles of gas are in a 5.00 L tank at 23.1 ∘C . Calculate the difference in pressure between methane and an ideal gas under these conditions. The van der Waals constants for methane are a=2.300L2⋅atm/mol2and b=0.0430 L/mol. Express your answer with the appropriate units.
#25 A 10.86 mol sample of krypton gas is maintained in a 0.7529 L container at...
#25 A 10.86 mol sample of krypton gas is maintained in a 0.7529 L container at 296.3 K. What is the pressure in atm calculated using the van der Waals' equation for Kr gas under these conditions? For Kr, a = 2.318L2atm/mol2 and b = 3.978×10-2 L/mol. ____atm According to the ideal gas law, a 1.077 mol sample of methane gas in a 1.670 L container at 265.4 K should exert a pressure of 14.05 atm. By what percent does...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT