Question

Light with a frequency of 3.197 x 10^15 will excite an electron in ground state hydogen...

Light with a frequency of 3.197 x 10^15 will excite an electron in ground state hydogen to what level?

Homework Answers

Answer #1

Relation between energy and frequency is givne as,

Energy = Planck's constatn * Frequency

E = 6.626 * 10-34 * 3.197 * 1015

E = 2.12 * 10-18 J

And

Energy of an electron in an orbit of hydrogen atom is given as,

E = - 2.18 * 10-18 / n2

2.12 * 10-18 = - 2.18 * 10-18 / n2

n2 = 1 .00

n = 1.00

This frequency corresponds to the energy of first level of hydrogen atom, it does not cause any excitation. More than this amount of energy and which is euqal to the energy of 2nd or 3rd and soon can cause excitation.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light with a wavelength of 96.94 x 10^ ­9 m is required to excite an electron...
Light with a wavelength of 96.94 x 10^ ­9 m is required to excite an electron in a hydrogen atom from level n=1 to a certain final level. What is the value of n of the final level?ΔE =− 2.18 × 10 ^ −18J ( 1/ n ^ 2f − 1 /n ^2i )
An electron is in the ground state of an infinite square well. The energy of the...
An electron is in the ground state of an infinite square well. The energy of the ground state is E1 = 1.13 eV. (a) What wavelength of electromagnetic radiation would be needed to excite the electron to the n = 7 state? nm (b) What is the width of the square well? nm
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom...
Will a photon of light of wavelength 480 nm excite an electron in the hydrogen atom from the n=1 level to the n=2 level? Explain
Find the energy required to excite a hydrogen electron for the following cases. Part A from...
Find the energy required to excite a hydrogen electron for the following cases. Part A from the ground state to the second excited state Part B from the first excited state to the second excited state Part C Classify the type of light needed to create the transition in part A. X-ray UV visible light Part D Classify the type of light needed to create the transition in part B. visible lught UV X-ray Submit
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state to n = 8 level what wavelength of light in (nm) would be needed for the abosorbed photon to cause the transition? Part B: If the same electron falls to a lower level by emmitting a photon of light in the Paschen series what is the frequncy of light in (Hz) thats emitted? (2) When a photon have a wavelength of 195nm strikes the...
monochromatic light with a frequency of 1.54*10^15 hz is shone onto the surface of tin. the...
monochromatic light with a frequency of 1.54*10^15 hz is shone onto the surface of tin. the total energy of the light shone is 1.02*10^-11j. what is the maximum number of electrons that can be ejected?how much kinetic energy does each ejected electron have?
How much energy in kJ is needed to excite 1 mol of H atoms to the...
How much energy in kJ is needed to excite 1 mol of H atoms to the stationary state with quantum number n = 6 from their ground state? B) Calculate the frequency in Hz of emitted light when electrons fall back to their grounds state from their state in part A.
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm...
An electron in a hydrogen atom relaxes to the ground state while emitting a 93.8 nm photon. a. Is this light visible? In what region of the electromagnetic spectrum does it lie? b. What was the initial principal quantum number, ni, of the electron undergoing the transition?
5. The light of frequency 8.9 x 10^14 Hz falls on a photoelectric surface. When the...
5. The light of frequency 8.9 x 10^14 Hz falls on a photoelectric surface. When the retarding potential of 0.85 V is applied, the maximum speed with which an electron reaches the collector plate is 4.9 x 10^5 m/s. Find: a) the maximum kinetic energy( in joules) of an electron as it leaves the photoelectrode b) the work function (in eV) of the photoelectrode c) the threshold frequency (in Hz) of the photoelectrode
While studying the photoelectric effect, a chemist finds that light with the frequency of 5.6 x...
While studying the photoelectric effect, a chemist finds that light with the frequency of 5.6 x 10(14) Hz is insufficient to eject electrons from a metal surface. Which of the following might the chemist reasonably try if the goal is to eject electrons? a. using light with frequency of 4.6 x 10(14) Hz b. using light with frequency of 6.6 x 10(14) Hz c. increasing the amplitude of the radiant light d. decreasing the amplitude of the radiant light What...