Question

If you wanted to control the pH of a solution at a baseline value that falls...

If you wanted to control the pH of a solution at a baseline value that falls outside the range for your buffer, what would you need to do?

The KH2PO4/K2HPO4 pair is sometimes used as buffers in biochemical work. Using the appropriate pKa, explain why.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa of its conjugate...
The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa of its conjugate acid and the ratio of the concentrations of the conjugate base and acid. The equation is important in laboratory work that makes use of buffered solutions, in industrial processes where pH needs to be controlled, and in medicine, where understanding the Henderson-Hasselbalch equation is critical for the control of blood pH. Part A As a technician in a large pharmaceutical research firm, you need...
The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa of its conjugate...
The Henderson-Hasselbalch equation relates the pH of a buffer solution to the pKa of its conjugate acid and the ratio of the concentrations of the conjugate base and acid. The equation is important in laboratory work that makes use of buffered solutions, in industrial processes where pH needs to be controlled, and in medicine, where understanding the Henderson-Hasselbalch equation is critical for the control of blood pH. Part A.) As a technician in a large pharmaceutical research firm, you need...
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of...
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of a potassium dihydrogen phosphate buffer solution of pH = 6.93. The pKa of H2PO4^- is 7.21. You have the following supplies: 2.00 mL of 1.00 M KH2PO4 stock solution, 1.50 m L of 1.00 M K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? (Assume additive volumes.) Express your answer to...
As a technician in a large pharmaceutical research firm, you need to produce 150. mL of...
As a technician in a large pharmaceutical research firm, you need to produce 150. mL of a potassium dihydrogen phosphate buffer solution of pH = 6.78. The pKa of H2PO4− is 7.21. You have the following supplies: 2.00 L of 1.00 M KH2PO4 stock solution, 1.50 L of 1.00 M K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? (Assume additive volumes.) Express your answer to three...
"Acid-base buffers are most effective when the target pH of the buffer solution is close (within...
"Acid-base buffers are most effective when the target pH of the buffer solution is close (within one unit) to the pKa of the conjugate acid in in the conjugate acid/base pair to be used in the buffer. This is called the buffer range for a particular acid/base system. For the three questions below, select the two compounds from the list which could be most effectively combined to create a buffer at the target pH. You will not need to use...
1) You need to prepare 1.000L of 0.50 M phosphate buffer, pH 6.21. Use the Henderson-Hasselbalch...
1) You need to prepare 1.000L of 0.50 M phosphate buffer, pH 6.21. Use the Henderson-Hasselbalch equation with a value of 6.64 for pK2, to calculate the quantities of K2PO4 and KH2PO4 you need to add to your flask. What is the ratio you need of [K2HPO4]/[KH2PO4] . For this question I know there is an answer already up, but it doesn't show work to help me understand how they got that answer. I also got something different using the...
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of...
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of a potassium dihydrogen phosphate buffer solution of pH = 7.02. The pKa of H2PO4− is 7.21. You have the following supplies: 2.00 L of 1.00 M KH2PO4 stock solution, 1.50 L of 1.00 M K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? (Assume additive volumes.)
As a technician in a large pharmaceutical research firm, you need to produce 300. mL of...
As a technician in a large pharmaceutical research firm, you need to produce 300. mL of a potassium dihydrogen phosphate buffer solution of pH = 7.10. The pKa of H2PO4− is 7.21. You have the following supplies: 2.00 L of 1.00 M KH2PO4 stock solution, 1.50 L of 1.00 M K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? (Assume additive volumes.)
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of...
As a technician in a large pharmaceutical research firm, you need to produce 450. mL of a potassium dihydrogen phosphate buffer solution of pH = 7.08. The pKa of H2PO4− is 7.21. You have the following supplies: 2.00 L of 1.00 M KH2PO4 stock solution, 1.50 L of 1.00 M K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 M KH2PO4 will you need to make this solution? (Assume additive volumes.)
PART A) As a technician in a large pharmaceutical research firm, you need to produce 350....
PART A) As a technician in a large pharmaceutical research firm, you need to produce 350. mL of 1.00 mol L−1 potassium phosphate buffer solution of pH = 6.93. The pKa of H2PO4− is 7.21. You have the following supplies: 2.00 L of 1.00 mol L−1 KH2PO4 stock solution, 1.50 L of 1.00 mol L−1 K2HPO4 stock solution, and a carboy of pure distilled H2O. How much 1.00 mol L−1 KH2PO4 will you need to make this solution? Express your...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT