Question

You place 40.3 ml of 0.366 M NaOH in a coffee- cup calorimeter at 25.00°C and...

You place 40.3 ml of 0.366 M NaOH in a coffee- cup calorimeter at 25.00°C and add 64.8 ml of 0.366 M HCl, also at 25.00°C. After stirring, the final temperature is 27.93°C. [Assume the total volume is the sum of the individual volumes and that the final solution has the same density (1.00 g/ml) and specific heat capacity (4.184 J/gK)]. Calculate the change in enthalpy (ΔH) of the reaction in kJ/mol of water formed. Enter to 1 decimal place. Hint: What does an increase in temperature mean? Enter the correct sign.

Homework Answers

Answer #1

moles of NaOH = 40.3 x 0.366 /1000 = 0.0148

moles of HCl = 64.8 x 0.366 / 1000 = 0.0237

limiting reagent is NaOH

NaOH + HCl ------------------> NaCl + H2O

total volume = 40.3 + 64.8 = 105.1 mL

mass = volume x density

          = 105.1 x 1

           = 105.1 g

Q = m Cp dT

Q = 105.1 x 4.184 x (27.93 - 25.00)

Q = 1288.4 J

ΔH = - Q / n

       = - 1.288 kJ / 0.0148

       = -87.1 kJ / mol

ΔH = - 87.1 kJ / mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a coffee-cup calorimeter, 130.0 mL of 1.0 M NaOH and 130.0 mL of 1.0 M...
In a coffee-cup calorimeter, 130.0 mL of 1.0 M NaOH and 130.0 mL of 1.0 M HCl are mixed. Both solutions were originally at 26.8°C. After the reaction, the final temperature is 33.5°C. Assuming that all the solutions have a density of 1.0 g/cm and a specific heat capacity of 4.18 J/°C ⋅ g, calculate the enthalpy change for the neutralization of HCl by NaOH. Assume that no heat is lost to the surroundings or to the calorimeter. Enthalpy change...
. In a coffee-cup calorimeter, 100.0 mL of 1.0 M NaOH and 100.0 mL of 1.0...
. In a coffee-cup calorimeter, 100.0 mL of 1.0 M NaOH and 100.0 mL of 1.0 M HCl are mixed. Both solutions were originally at 24.6 oC. After the reaction, the temperature is 31.3 oC. What is the enthalpy change for the neutralization of HCl by NaOH?
25 mL of 1.0 M NaOH(aq) is placed in the coffee cup calorimeter and measure the...
25 mL of 1.0 M NaOH(aq) is placed in the coffee cup calorimeter and measure the temperature as 18.0 0C. Addition of 25 mL of 1.0 M HCl causes the temperature to rise to 25.0 0C. What is the Hrxn for this reaction of neutralization of NaOH? (dH2O = 1.00 g/mL and cs, H2O = 4.18 J/g0C))
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a...
Andrea has been measuring the enthalpy change associated with reaction between HCl and NaOH in a coffee cup calorimeter. Andrea combined 51.48 mL of 1.00 M HCl and 34.62 mL of 1.00 M NaOH in a coffee cup calorimeter (mass of the coffee cups + a stir bar = 15.00 g). If the initial temperature of the acid/base solution was 17.13 oC, and the final observed temperature was 27.95 oC, what is the enthalpy change of the neutralization reaction, in...
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of...
Suppose that 300.0 mL of 1.00 M HCl at 25.0°C is added to 300.0 mL of 1.00 M NaOH at 25.0°C in a coffee cup calorimeter. If the enthalpy of the reaction is −54.0 kJ/mol of NaCl formed, what is the final temperature of the solution in the calorimeter? Assume the mixture has a specific heat capacity of 4.18 J/(g·K) and a density of 1.00 g/mL (1) 3.5°C                     (2) 6.5°C                     (3) 18.5°C                   (4) 31.5°C                   (5) 46.5°C
1) You place a 50mL of 0.50M NaOh and 25mL of 0.50M HCl in a coffee...
1) You place a 50mL of 0.50M NaOh and 25mL of 0.50M HCl in a coffee cup calorimeter. What is the final temperature of the calorimeter if the initial temperature of the solution is 15.8 degree celsius. ( The change in enthalpy for the reaction is -55.4 kJ/mole H2O) (assume the solution has specific heat and density as water, s=4.184 J/g oC, density=1.00 g/L) 2) It took 3.20 min for 1.00 L N2 to effuse through a porous barrier. How...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both the solutions have an initial temperature of 28.7 °C. Calculate the final temperature of the resulting solution, given the following information: H+(aq) + OH- (aq) ? H2O(?) ? ? ? ?Hrxn = -56.2 kJ/mol Assume that volumes can be added, that the density of the solution is the same as that of water (1.00 g/mL),...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347...
300 mL of a 0.694 M HCl aqueous solution is mixed with 300 mL of 0.347 M Ba(OH)2 aqueous solution in a coffee-cup calorimeter. Both the solutions have an initial temperature of 28.7 °C. Calculate the final temperature of the resulting solution, given the following information: H+(aq) + OH- (aq) → H2O(ℓ)       ΔHrxn = -56.2 kJ/mol Assume that volumes can be added, that the density of the solution is the same as that of water (1.00 g/mL), and the specific...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M...
A 96.2 mL sample of 1.00 M NaOH is mixed with 48.1 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.25 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 30.90 °C. Assume that the density of the mixed solutions is 1.00...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M...
A 107.2 mL sample of 1.00 M NaOH is mixed with 53.6 mL of 1.00 M H2SO4 in a large Styrofoam coffee cup; the cup is fitted with a lid through which passes a calibrated thermometer. The temperature of each solution before mixing is 22.45 °C. After adding the NaOH solution to the coffee cup and stirring the mixed solutions with the thermometer, the maximum temperature measured is 32.10 °C. Assume that the density of the mixed solutions is 1.00...