Question

The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard...

The standard molar enthalpy of formation for gaseous H2O is −241.8 kJ/mol. What is the standard molar enthalpy of formation for liquid hydrazine (N2H4)?     

N2H4(l) + O2(g) → N2(g) + 2H2O(g)      ΔH° = ‒534.2 kJ

  

‒292 kJ/mol

   

292 kJ/mol

   

‒146 kJ/mol

50.6 kJ/mol

‒50.6 kJ/mol

Homework Answers

Answer #1

Solution :-

Given data

Standard enthalpy of formation of the water is given Delta H f H2O = -241.8 kJ per mol

Enthalpy change of reaction Delta H rxn = -534.2 kJ

Delta H f N2H4 = ?

Values of the Delta Hf of N2(g) and O2(g) = 0.00 kJ ( they are in elemental form)

Using the Hess's law formula we can calculate the enthalpy change of formation of the N2H4(l)

Delta H rxn = sum of Delta Hf product - sum of Delta Hf reactant

lets make the set up

Delta H rxn = [H2O *2 ] -[ N2H4*1]

lets put the values in the formula

-534.2 kJ = [-241.8 kJ * 2] - [ N2H4]

-534.2 kJ = -483.6 kJ - [N2H4]

[N2H4] = 534.2 kJ - 483.6 kj

[N2H4] = 50.6 kJ /mol

Therefore the standard enthalpy of formation of the N2H4(l) = 50.6 kJ/ mol

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation...
9. Use the following experimentally derived combustion data to calculate the standard molar enthalpy of formation (ΔH°f ) of liquid methanol (CH3OH) from its elements. 2 CH3OH(l) + 3 O2(g) → 2 CO2(g) + 4 H2O(l)     ΔH°rxn = −1452.8 kJ C(graphite) + O2(g) → CO2(g)                               ΔH°rxn = −393.5 kJ 2 H2(g) + O2(g) → 2 H2O(l)                                     ΔH°rxn = −571.6 kJ (1) −238.7 kJ/mol    (2) 487.7 kJ/mol       (3) −548.3 kJ/mol    (4) 20.1 kJ/mol         (5) 47.1 kJ/mol
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s)...
Use the data below to determine the standard molar enthalpy of formation of B2H6 (g). 4B(s) + 3 O2(g) --> 2 B2O3................................deltaHrxn= -2543.9 kj/mol H2(g) + 1/2 O2(g) --> H2O(g).............................deltaHrxn= -241.8 kj/mol B2H6(g) + O2(g) --> B2O3(s) + 3 H2O(g)..........deltaHrxn= -2032.9kj/mol
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance   ΔH∘f (kJ/mol) NO(g)   90.2 O2(g)   0 NO2(g)   33.2 Then the standard heat...
The compound cyclohexanol, C6H12O, is a good fuel. It is a liquid at ordinary temperatures. When...
The compound cyclohexanol, C6H12O, is a good fuel. It is a liquid at ordinary temperatures. When the liquid is burned, the reaction involved is 2 C6H12O(ℓ) + 17 O2(g)---->12 CO2(g) + 12 H2O(g)   The standard enthalpy of formation of liquid cyclohexanol at 25 °C is -348.2 kJ mol-1; other relevant enthalpy of formation values in kJ mol-1 are:   C6H12O(g) = -286.2 ; CO2(g) = -393.5 ; H2O(g) = -241.8 (a) Calculate the enthalpy change in the burning of 3.000 mol...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the standard heat...
The standard molar enthalpy of formation, of diborane cannot be determined directly because the compound cannot...
The standard molar enthalpy of formation, of diborane cannot be determined directly because the compound cannot be prepared by reaction of boron and hydrogen. However, the value can be calculated. Calculate the standard enthalpy of formation of gaseous diborane(B2H6) using the following thermochemical information: i) 4B(s) + 3O2(g) --> WB2O3(S) = -2509.1kJ ii) 2H2(g) + O2(g) --> 2H2O(l) = - 571.7kJ iii) B2H6(g) + 3O2(g) --> B2O3(s) + 3H2O(l) = -2147.5 kJ
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The...
1.) Using enthalpies of formation, calculate the standard change in enthalpy for the thermite reaction. The enthalpy of formation of Fe3O4 is −1117 kJ/mol. 8 Al(s) + 3 Fe3O4(s) → 4 Al2O3(s) + 9 Fe(s) 2. a) Nitroglycerin is a powerful explosive, giving four different gases when detonated. 2 C3H5(NO3)3(l) → 3 N2(g) + 1/2 O2 (g) + 6 CO2(g) + 5 H2O(g) Given that the enthalpy of formation of nitroglycerin, ΔHf°, is −364 kJ/mol, calculate the energy (heat at...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g)...
The standard enthalpy change for the combustion of 1 mole of ethylene is -1303.1 kJ C2H4(g) + 3 O2(g) ----> 2 CO2(g) + 2 H2O Calculate the change of Hf for ethylene based on the following standard molar enthalpies of formation. molecules Change in Hf (kJ/mol) CO2 -393.5 H2O -241.8
Calculate the standard enthalpy of formation of Ga2H6(g) (in kJ/mol) from the following data: 2 Ga(s)...
Calculate the standard enthalpy of formation of Ga2H6(g) (in kJ/mol) from the following data: 2 Ga(s) + 3/2 O2(g)-->Ga2O3(s).   ΔHo = –1188 kJ/mol Ga2H6(g) + 3 O2(g)-->Ga2O3(s) + 3 H2O(l). ΔHo = –2158 kJ/mol H2(g) + 1/2 O2(g)--> H2O(g) ΔHo = –242 kJ/mol H2O(l)-->H2O(g) ΔHo = +44 kJ/mol 2 Ga(s) + 3 H2(g)-->Ga2H6(g). ΔHo = ? kJ/mol
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of...
The standard heat of formation, ΔH∘f, is defined as the enthalpy change for the formation of one mole of substance from its constituent elements in their standard states. Thus, elements in their standard states have ΔH∘f=0. Heat of formation values can be used to calculate the enthalpy change of any reaction. Consider, for example, the reaction 2NO(g)+O2(g)⇌2NO2(g) with heat of formation values given by the following table: Substance ΔH∘f (kJ/mol) NO(g) 90.2 O2(g) 0 NO2(g) 33.2 Then the heat of...