Question

Use the Born-Haber Cycle to calculate the lattice energy of an ionic solid which includes a...

Use the Born-Haber Cycle to calculate the lattice energy of an ionic solid which includes a polyatomic ion.

Homework Answers

Answer #1

Consider the case of CaCl2:

Ca(s) + Cl2(g)    CaCl2(s)

Using Born-Haber Cycle:

Ca (s) Ca (g) ............Hsub = 178.2 kJ

Ca (g) Ca+ (g) + e- ...........HI.E.1 = 590 kJ

Ca+ (g) Ca2+(g) + e- .......HI.E.2 = 1145 kJ

Cl2 (g) 2Cl (g) ..............B.E. Cl2 =  244 kJ

2Cl (g) + 2e- 2Cl- ...........HE.A. 2Cl = 2(−349 kJ)

Ca2+ (g) + 2Cl- (g) CaCl2 (s) ......L.E. = ?

Ca (s) + Cl2 (g) CaCl2 (s) ......Hf =  -795.8 kJ

Now,

Hf = L.E. + Hsub + HI.E.1 + HI.E.2 + B.E. Cl2 + HE.A. 2Cl

-795 kJ =  = LE + 2(-349 kJ) + 244 kJ + 1145 kJ + 590 kJ + 178.2 kJ

L.E. = 2254.2 kJ

Hence, Lattice Energy for CaCl2 (s) = 2254.2 kJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
calculate the lattice energy of CsCl using a Born-Haber cycle.
calculate the lattice energy of CsCl using a Born-Haber cycle.
Draw the Born-Haber cycle for the formation of CaH2, and calculate the value for lattice energy?...
Draw the Born-Haber cycle for the formation of CaH2, and calculate the value for lattice energy? (You will have to look up the required thermodynamic data)
Construct a Born-Haber cycle to calculate the lattice energy of MgCl2. The CRC Handbook of Chemistry...
Construct a Born-Haber cycle to calculate the lattice energy of MgCl2. The CRC Handbook of Chemistry and Physics lists the MgCl2 lattice energy as 2540 kJ mol-1. How does your answer compare to the literature value?
Construct a Born-Haber cycle diagram that would be used to determine the lattice energy for RbBr....
Construct a Born-Haber cycle diagram that would be used to determine the lattice energy for RbBr. You will need to draw a clear diagram with arrows show each step transition. Each step should clearly have any states and charges noted. There are no calculations for this question
Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s)...
Use the Born Haber cycle (show relevant steps) to determine the lattice energy of CsCl (s) from the following data: Hf 0 [CsCl(s)] = -442.8 kJ/mol; enthalpy of sublimation of Cesium is 78.2 kJ/mol; enthalpy of dissociation of Cl2 (g) = 243 kJ/mol Cl2 ; IE1 for Cs(g) = 375.7 kJ/mol; electron affinity enthalpy-EA1 for Cl(g) = -349kJ/mol. - need answer fast - thanks
Construct a Born-Haber cycle for the formation of the hypothetical compound NaCl2, where the sodium ion...
Construct a Born-Haber cycle for the formation of the hypothetical compound NaCl2, where the sodium ion has a 2+ charge (the 2nd ionization energy for sodium is given in Table 7.2 in the textbook). Part B If we were to estimate the lattice energy of NaCl2 to be roughly equal to that of MgCl2 (2326 kJ/mol from Table 8.2 in the textbook), what value would you obtain for the standard enthalpy of formation, ΔH∘f, of NaCl2? Express your answer using...
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2....
Use the Born-Haber cycle, and the following data to calculate the bond dissociation energy of F2. Na(g) → Na+(g) + e-(g)    ΔrH = IE1 = 500 kJ mol-1 Na(s) → Na(g)    ΔsubH = 107 kJ mol-1 F-(g) → F(g) + e-(g)    ΔrH = EA1 = 329 kJ mol-1 Na(s) + 1/2 F2(g) → NaF(s)    ΔfH = -569 kJ mol-1 Na+(g) + F-(g) → NaF(s)    ΔlattH = -928 kJ mol-1
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of...
Born-Haber cycle for MgO. a. write the equation illustrating the steps shown in each part of the Born-Haper cycle. b. using the information below, calculate the stadarn enthalpy formation for MgO. Be sure to label the steps of the cycle with equations and corresponding energy values. values. Lattice energy for MgO: -3791 kj/mol heat of sublimination for Mg: +147.7 kj/mol Bond dissociation for O2: +498.4 kj/mol First ionization energy for Mg: +738 kj/mol second ionization energy for Mg: +1451 kj/mol...
For an ionic compound, the magnitude of the lattice energy (ΔHo lattice) is proportional to the...
For an ionic compound, the magnitude of the lattice energy (ΔHo lattice) is proportional to the strength of the interactions between the cations and anions in the solid. List and describe two factors that influence the magnitude of ΔHo lattice for an ionic compound.
1. Which of the following transition(s) is/are necessary to construct a Born Haber Cycle for the...
1. Which of the following transition(s) is/are necessary to construct a Born Haber Cycle for the formation of NaCl solid? Multiple answers: You can select more than one option A) Na(s) → Na(l) B) Na(s) → Na(g) C) Na(g) → Na^+​+​​(g) + e^-​−​​ D) Cl_2​2​​(g) → 2Cl(g) E) Na(s) + ½ Cl_2​2​​(g) →NaCl(s) 2. Which of these transitions are exothermic processes? Multiple answers are accepted. A) Na(g) → Na(l) B) Na(s) → Na(g) C) Na(g) → Na^+​+​​(g) + e^-​−​​ D)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT